Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос приближения функций. Понятие точечной и интерполяционной аппроксимации.





Если величина y является функцией аргумента x, то любому значению x из области определениясоответствует некоторое значение y.

Однако, на практике часто неизвестна явная зависимость y от x, то есть ее невозможно записать в виде y = f(x). Бывают случаи, когда затруднительно использовать даже известную зависимость y = f(x). Наиболее распространенным случаем, когда вид связи между параметрами y и x неизвестен, является задание этой зависимости в виде таблицы { xi,yi }. В этом случае дискретному множеству значений аргумента соответствует множество значений функции {yi} полученные либо в результате расчетов, либо в экспериментов.

Нам могут потребоваться значения функции y в точках отличных от xi., а это может быть затруднено. Таким образом, мы приходим к необходимости использования имеющихся табличных данных для приближенного вычисления значения y при любом значении параметра x, с помощью имеющейся табличных данных.

Этой цели служит задача аппроксимации функции: функцию f(x) требуется приближенно заменить некоторой функцией φ(x) так, чтобы отклонение φ(x) от f(x) в заданной области было наименьшим. Функция φ(x) при этом называется аппроксимирующей. На практике часто эта функция представляется поленомом:

В дальнейшем будем рассматривать только такую аппроксимацию. При этом коэффициенты ai будут подбираться так, чтобы достичь наименьшего отклонения графика от данной функции.

Если приближение строится на заданном дискретном множестве точек {xi}, то аппроксимация называется точечной. При построении приближения на непрерывном множестве точек аппроксимация называется непрерывной (интегральной).

Точечная аппроксимация.

Одним из основных типов точечной аппроксимации является интерполяция. Она состоит в следующем: для заданной функции y=f(x) строится многочлен, принимающий в заданных точках xi те же значения yi, что и функция f(x), то есть

При этом предполагается, что среди узлов нет одинаковых. Точки xi называются узлами интерполяции, а многочлен φ(x) - интерполяционным многочленом.

Таким образом, близость интерполяционного многочлена к заданной функции состоит в том, что их значения совпадают на заданной системе точек. Если максимальная степень интерполяционного поленома равна n-1; то говорят о глобальной интерполяции, так как один многочлен используется для замены функции f(x) на всем интервале изменения xi . Коэффициенты aj поленома можно найти из СЛАУ вида yi= φ(xi), при условии xi=xj, j≠i. Как правило, интерполяционные многочлены используются для аппроксимации функции в промежуточных точках между крайними узлами интерполяции, то есть при x0 < x < xn. Однако, иногда они используются для приближенного вычисления функции вне рассматриваемого отрезка . Этот вид аппроксимации называют экстраполяцией.

Как видно, при интерполировании основным условием является прохождение графика интерполяционного многочлена через данные значения функции в узлах интерполяции. Однако, в ряде случаев, выполнить данное условие затруднительно или нецелесообразно.

Например, при большом количестве узлов интерполяции получается высокая степень многочлена. Кроме того, исходные данные могут содержать ошибку. Построение аппроксимирующего многочлена, с условием обязательного прохождения его графика через узлы интерполяции, означает повторение имеющейся ошибки. Выходом является исполнение апроксимирующей зависимости, график которой проходит "близко" от узлов интерполяции. Одним из видов такой зависимости является среднеквадратичное приближение функции с помощью мноочлена степень которокго меньше количества узлов апроксямации.







Дата добавления: 2015-08-12; просмотров: 1471. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия