Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление собственных чисел матрицы.





В процессе конструирования и анализа больших технич. систем инженеру очень часто приходится сталкиваться с задачей нахожд. собств. чисел и собственных векторов исследуемой системы, кот. характеризуют её внутренние св-ва. Математически задача нахождения собственного числа выглядит след. образом: Пусть задана квадратная матрица Аm,m. Обозначаем скалярное произведение 2-х векторов:

- норма.

Число l явл. собств. числом матрицы А, если найдётся ненулевой вектор Х, для кот. вып. равенство (1) Ах = lх. В этом случае вектор Х наз. собственным вектором матрицы А. Запишем (1) в др. виде: (А-lЕ)х=0 (2). Е – единичная матрица. Эта система будет им. ненулевое решение тогда, когда определитель матрицы det (A-lE)=0 (3). Раскрывая ур. (3), мы получаем характеристическое ур. вида: . Известно, что алгебраическое ур. степени m им. m корней в области комплексных чисел, т.е люб. матрица А порядка m им. ровно m собственных значений, комплексно сопряжённые. Во многих дисциплинах сущ. задачи, связывающие с выч. всех собств. чисел. В этом случае задача наз. полной проблемой собственных значений. Однако, гораздо чаще в задачах треб. определить одно собственное значение или некоторую их часть. Такие задачи наз. частичной проблемой собственных значений. В плане постановки такой задачи существующий интерес представляет нахождение собственного числа, наиболее близкого расположенного к заданному, или нахождение наибольшего или наименьшего собственного числа. Характеристическое ур. можно решать любым численным методом с последующим понимание порядка ур. после нахождения одного из корней. Пример:

l1=1; делим на l-1: -l2+8l-13=0 → l2=4±

Описанный приём для реш. характерного ур. относят к прямым методам реш. проблем собственных значений. Их применению может воспрепятствовать высокий порядок m, когда корни характеристического ур. становятся чувствительны к погрешности и м.б потеряна достоверная инф. об m величене. Рассмотрим один из самых простых методов реш. задачи о собственных числах – степенной метод без сдвигов. Пусть требуется определить max по модулю собственное значение l1 матрицы А. l1 д.б вещественным. Возмём произвольный вектор х0 и построим из него последовательность векторов и Итерационный процесс:

Теорема: Пусть задана матрица А достаточно простой структуры, для кот. |l1|>|l2|≥|l3|≥…≥|lm|. Предположим что разложение х(0) по базису собственных векторов х01е1+ С2е2+…+ Сmеm происходит с С1≠0. Тогда |lk1| → |l1|k→∞и справедлива следующая оценка погрешности: Исходя из формулы (4), можно записать, что х(к)к х(0). Допускается следующее усовершенствование метода: y(к)=Ах(k-1), l(к)=(y(к), y(к-1)), Для того. чтобы схема была работоспособной, нужно, чтобы ||x(0)||=1. Подобный подход позволяет избежать возникших в результате вычислений проблем с переполнением или потерей порядка. Одним из недостатков степенного метода без сдвигов явл. его медленная сходимость применительно ко многим прикладным задачам.







Дата добавления: 2015-08-12; просмотров: 666. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия