Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сплайны.





Использование многочленов высокой степени при решении задачи интерполяции связана с повышением сложности вычислений. Помимо этого необходимы спец методы составления подобных многочленов. Дополнительная трудность составляет накопление ошибок в округлении при проведении вычислений. Выходом может служить применение локальной интерполяции с использованием многочленов невысокой степени. Главным недостатком здесь явл. отличие производных в точках стыка двух соседних многочленов. В некоторых случаях эта особенность не играет большой роли при решении задачи интерполяции. Иногда быв. ситуации, требующие гладкости интерполяции многочлена. В этом случае в качестве интерполяции ф-и исп. сплайны, представленные собой спец образом построенные гладкие кусочно-многочленные ф-и, сочетающие в себе локальную простату и глобальную на всём отрезке [x0; xn] гладкость.

Пусть отрезок [x0; xn] разбит на n частей [xi-1; xi]. Тогда сплайном степени m Sm(x) наз. ф-ия, обладающая след. св-ми:

1. ф-ия Sm(x) непрерывна на всём отрезке от [x0; xm] вместе со своими производноми до некоторого порядка Р;

2. На каждом отрезке [xi-1; xi] сплайн совпадает с некоторым многочленом степени m. Sm(x)=Pm,i(x)

Разность теорем между степенью сплайна и наивысшей на отрезке (x0; xn) непрерывной производной наз. дефектом сплайна. Показанный на рисунке. Дефект сплайна = 1.

На практике наиб. распространенные кубич. сплайны с дефектом 1 или 2. На каждом отрезке такой сплайн совпад. с полиномом вида:

Значения называется наклоном сплайна в точке xi. Т.о., отрезке (xi-1; xi) кубический сплайн однозначно определяется величинами

(1)

Фактически задача сводится к определению наклонов сплайна Si-1 и Si:

Если в т. xi, где , нам известны не только величины , но и величины , то естественно предположить: . Получаемый в этом случае сплайн называется локальным.

Можно потребовать, чтобы кубический сплайн имел непрерывную на отрезке от x0 до xn 2-ю производную. Для этого наклоны Si должны быть подобраны т.о., чтобы в т. стыка xi у соседних полиномов P3,i(x) и P3,i+1(x) совпадали значения 2-х производных: . Используя ф-лу (1), найдём выражения 2-х производных

Приравниваем значения 2-х производных в т. стыка, получим систему из n-1 ур. для n+1 неизвестного:

Полученная система явл. не доопределённой.

Если известны численные значения , то найденная система дополнилась бы 2-я ур.: для левой границы:

Если численные значения неизвестны, то полученную систему можно привести к системе, определяющий естественный кубический сплайн. В этом случае искусственно полагают вторые производные на границах отрезка x0 и xn = 0.







Дата добавления: 2015-08-12; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия