Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейная и квадратичная интерполяция.





Локальная интерполяция состоит в том, что в рассмотрение принимается не все точки из таблицы, а лишь некоторые их подмножества, которые наиболее близко расположены от новой точки.

Линейная интерполяция состоит в том, что заданные в таблице точки (xi;yi), (xi+1;yi+1) соед. Прямыми. Т.о. неизвестная функция заменяется ломанной линией с вершинами в узлах интерполяции.

Уравнения каждого отрезка ломаной в каждом случае разные. Поскольку имеется n интервалов (xi-1,xi), то для каждого из них в качестве уравнения интерполяционного многочлена используется уравнение прямой, проходящей через две точки. Для любого i-го интервала, лежащего между (xi-1,yi-1) и (xi, yi) уравнение имеет вид:

отсюда

 

Следовательно, при использовании линейной интерполяции сначала нужно определить интервал, которому принадлежит значение аргумента x, а затем подставить его в формулу y = aix + bi и найти приближенное значение функции в этой точке.

Рассмотрим случай квадратичной интерполяции. В качестве интерполяционной функции на отрезке принимается квадратный трехчлен. Этот вид интерполяции также называют параболической. Уравнение квадратного трехчлена:

Он содержит три неизвестных коэффициента ai,bi, ci. Для их определения необходимы три уравнения. Ими служат условия прохождения параболы через три точки: (xi-1, yi-1), (xi,yi), (xi+1, yi+1).

Эти условия записываются в виде:

Решив эту систему уравнений, получим значения ai,bi,ci. Интерполяция для любой точки

проводится по трем ближайшим к ней узлам.

 

 







Дата добавления: 2015-08-12; просмотров: 3357. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия