Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дихотомия (метод деления отрезка пополам).





1. Пусть

существует хотя бы один корень на ;

2.

Рассмотрим и . Из этих двух выберем тот, на концах которого функция принимает значения разных знаков и поделим его пополам и т.д.

Если нужно найти корень с точностью до , то мы продолжаем делить отрезок до тех пор, пока длина отрезка не станет меньше , тогда середина последнего отрезка дает значение корня с требуемой точностью.

Дихотомия проста и очень надежна: к простому корню она сходится всегда для любой непрерывной функции в том числе и недифференцируемой, при этом она устойчива к ошибкам округления. Скорость сходимости метода дихотомии не велика, т.е. за одну итерацию точность увеличивается вдвое.

Недостатки: прежде чем применить, необходимо найти отрезок, на концах которого функция принимает значения разных знаков. Если на этом отрезке несколько корней, то неизвестно к какому из них сходится дихотомия. Метод не применим к корням четной кратности.

Метод применим к корням нечетной кратности, но хуже устойчив к ошибкам округления. Метод не применим к системам уравнений.

 

 


 

§12. Метод простой итерации для решения алгебраических и трансцендентных уравнений.

ТЕОРЕМА 1. (Принцип Банаха сжимающихся отображений).

Пусть R – полное метрическое пространство. Если сжатие, то для него существует в R единственная неподвижная точка, к которой сходится итерационный процесс.

, где - произвольный.

План доказательства.

1. – фундаментальная

(*)

q – коэффициент сжатия

.

2. Т.к. R – полное метрическое пространство, то в нем всякая фундаментальная последовательность сходится.

– сходится, , причем , т.е. – неподвижная точка.

3. – единственна.

ЧТД.

 

- последовательность приближения к решению уравнения

 

Метод метод простой итерации.

Если в (*) зафиксировать, а , то

– оценка погрешности, оценка скорости сходимости.

со скоростью геометрической прогрессии.

– линейная скорость сходимости.

Метод простой итерации имеет линейную скорость сходимости.

Пусть (2), – вещественная функция.

Необходимо привести к виду .

, - знакопостоянная непрерывная функция.

 

Условие сходимости для данного метода:







Дата добавления: 2015-08-12; просмотров: 867. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия