Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дихотомия (метод деления отрезка пополам).





1. Пусть

существует хотя бы один корень на ;

2.

Рассмотрим и . Из этих двух выберем тот, на концах которого функция принимает значения разных знаков и поделим его пополам и т.д.

Если нужно найти корень с точностью до , то мы продолжаем делить отрезок до тех пор, пока длина отрезка не станет меньше , тогда середина последнего отрезка дает значение корня с требуемой точностью.

Дихотомия проста и очень надежна: к простому корню она сходится всегда для любой непрерывной функции в том числе и недифференцируемой, при этом она устойчива к ошибкам округления. Скорость сходимости метода дихотомии не велика, т.е. за одну итерацию точность увеличивается вдвое.

Недостатки: прежде чем применить, необходимо найти отрезок, на концах которого функция принимает значения разных знаков. Если на этом отрезке несколько корней, то неизвестно к какому из них сходится дихотомия. Метод не применим к корням четной кратности.

Метод применим к корням нечетной кратности, но хуже устойчив к ошибкам округления. Метод не применим к системам уравнений.

 

 


 

§12. Метод простой итерации для решения алгебраических и трансцендентных уравнений.

ТЕОРЕМА 1. (Принцип Банаха сжимающихся отображений).

Пусть R – полное метрическое пространство. Если сжатие, то для него существует в R единственная неподвижная точка, к которой сходится итерационный процесс.

, где - произвольный.

План доказательства.

1. – фундаментальная

(*)

q – коэффициент сжатия

.

2. Т.к. R – полное метрическое пространство, то в нем всякая фундаментальная последовательность сходится.

– сходится, , причем , т.е. – неподвижная точка.

3. – единственна.

ЧТД.

 

- последовательность приближения к решению уравнения

 

Метод метод простой итерации.

Если в (*) зафиксировать, а , то

– оценка погрешности, оценка скорости сходимости.

со скоростью геометрической прогрессии.

– линейная скорость сходимости.

Метод простой итерации имеет линейную скорость сходимости.

Пусть (2), – вещественная функция.

Необходимо привести к виду .

, - знакопостоянная непрерывная функция.

 

Условие сходимости для данного метода:







Дата добавления: 2015-08-12; просмотров: 867. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия