Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементарный вывод формулы Лапласа





 

Формулу Лапласа можно получить достаточно просто, если рассмотреть механическое равновесие элемента поверхности раздела. На этой поверхности около произвольной точки O (рис. 29) выделяется малый криволинейный четырехугольник. Пусть ON – внешняя по отношению к первой фазе нормаль к поверхности. Через нее проводятся две взаимно перпендикулярные плоскости, которые пересекаются с поверхностью раздела по некоторым кривым с радиусами кривизны r 1 и r 2 . Малые дуги È A 1 B 1 и È A 2 B 2 – отрезки этих кривых. Элементарная площадка получается, если через концы дуг провести на поверхности кривые, параллельные плоскостям. На рис. 29 это четырехугольник CDEF. С точностью до малых второго порядка È CD = È FE = È A 1 B 1 = ∆ l 1 и È CF = È DE = È A 2 B 2 = ∆ l 2. Площадь четырехугольника равна ∆Σ = ∆ l 1× ∆ l 2. Сила поверхностного натяжения, приложенная к краю CF, в соответствии с формулой (65.2) равна ∆ f 1 = σ∆ l 2. Ее проекция на OO 1 будет

 

  Рис. 29

f 1 sin φ1» ∆ f 1 φ1 = ∆ f 1l 1 / (2 r 1) =

 

= σ / (2 r 1) × ∆Σ.

 

Такое же значение имеет проекция силы натяжения, действующей по краю DE. Поэтому результат удвоится (ради простоты считается, что дуги È A 1 B 1 и È A 2 B 2 делятся точкой O пополам). Аналогичным образом находится проекция сил поверхностного натяжения, приложенных по CD и FE. В результате сила давления, действующая на первую фазу со стороны элемента изогнутой поверхности, равна σ (1/ r 1 + 1/ r 2) × ∆Σ и для давления получается формула Лапласа.

 

 







Дата добавления: 2015-08-12; просмотров: 2958. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия