Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Термодинамика поверхностных явлений





 

Термодинамика поверхностных явлений была развита Гиббсом. Он принимал поверхностный слой за новую "поверхностную фазу", отличную от объемных фаз тем, что ее толщина мала, и поэтому рассматривал поверхностный слой как геометрическую разделяющую поверхность, применяя к ней термодинамические уравнения.

Площадь поверхности фазы Σ является наряду с объемом V системы ее параметром. Изменение этой площади сопровождается работой

 

δ A = – σ d Σ. (65.1)

 

Величина σ называется коэффициентом поверхностного натяжения. Из опыта известно, что σ зависит от жидкости и среды, с которой жидкость граничит, и является функцией температуры (с ростом температуры убывает).

Пользуясь выражением для элементарной работы (65.1), можно показать, что сила поверхностного натяжения по величине равна

 

f = σ l, (65.2)

 

где l – длина края пленки (или разреза граничной поверхности), и направлена перпендикулярно краю по касательной к поверхности жидкости. Наиболее просто формула (65.2) получается, если рассмотреть пленку, натянутую на рамку с подвижной стороной (см. рис. 28). Пусть подвижная сторона под действием приложенной к ней силы 2 f перемещается на dx. Площадь пленки увеличивается при этом на 2 ldx (с учетом двух сторон пленки). Для работы силы имеются два выражения:

 

δ A = 2 fdx = σ2 ldx,

 

откуда и следует приведенная формула.

Свободная энергия системы, состоящей из двух фаз с некоторой поверхностью раздела, зависит от температуры, параметров каждой фазы и площади разделяющей их поверхности:

F = F (T, V 1, V 2, N 1, N 2, Σ). (65.3)

 

Для каждой фазы свободная энергия зависит только от температуры и параметров фазы:

 

Fi = Fi (T, Vi, Ni), i = 1, 2. (65.4)

 

Сумма F 1 + F 2 включает лишь объемную часть свободной энергии системы и не равна F. Величину

 

F Σ = F – (F 1 + F 2) (65.5)

 

можно рассматривать как свободную энергию поверхности раздела двух фаз (или вообще двух сред). Аналогично можно ввести внутреннюю энергию и энтропию поверхности раздела:

 

U Σ = U – (U 1 + U 2), S Σ = S – (S 1 + S 2). (65.6)

 

Основное уравнение термодинамики для всей системы имеет вид

 

dU = TdSp 1 dV 1p 2 dV 2 + σ d Σ + μ1 dN 1 + μ2 dN 2. (65.7)

 

Для каждой фазы

 

dUi = TdSipidVi + μ idNi, i = 1, 2. (65.8)

 

Если из уравнения (65.7) вычесть сумму уравнений (65.8), то получится основное уравнение термодинамики для поверхности раздела сред:

 

dU Σ = TdS Σ + σ d Σ. (65.9)

 

Соответственно дифференциал свободной энергии этой поверхности определяется выражением

 

dF Σ = – S Σ dT + σ d Σ. (65.10)

 

Частные производные от свободной энергии равны

 

F Σ / ¶ T)Σ = – S Σ, (¶ F Σ / ¶Σ) T = σ. (65.11)

 

Поскольку коэффициент поверхностного натяжения для данной системы зависит только от температуры σ = σ(T) (это фактически термическое уравнение состояния поверхности раздела), то второе соотношение (65.11) интегрируется:

 

F Σ = σ(T) × Σ (65.12)

 

(постоянная интегрирования по физическим соображениям равна нулю). Энтропия находится из первого соотношения (65.11):

 

S Σ = – d σ / dT × Σ. (65.13)

 

Внутренняя энергия имеет вид

 

U Σ = (σ – T × d σ / dT) × Σ. (65.14)

 

При изотермическом изменении площади поверхности раздела поглощается количество теплоты

 

δ Q = dU – σ d Σ = – T × d σ / dT × d Σ.

 

Теплота образования единицы поверхности раздела равна

 

q = – T × d σ / dT. (65.15)

 

Она положительна, потому что, как показывает опыт, σ уменьшается с увеличением температуры.

 







Дата добавления: 2015-08-12; просмотров: 1719. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия