Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Часть 2. Векторная алгебра





2.1. Пространства

Обозначим через множество упорядоченных наборов по действительных чисел: , . Сами такие наборы называются - мерными векторами.

Рассмотрим -мерные векторы и . Два вектора и называются равными, если равны их соответствующие координаты: ,

Введем на множестве линейные операции.

 

Суммой двух векторов и называется вектор, координаты которого равны суммам соответствующих координат векторов и :

.

 

Произведением вектора на действительное число называется вектор, координаты которого равны произведению числа на соответствующие координаты вектора :

.

Линейные операции над векторами удовлетворяют свойствам:

1. 5.

2. 6.

3. 7.

4. 8.

где , - произвольные действительные числа, - нулевой вектор, – вектор, противоположный к вектору .

 

Множество , с введенными на нем линейными операциями, называется пространством .

Если линейные операции удовлетворяют указанным выше восьми свойствам, то соответствующее пространство называется линейным или векторным пространством. Таким образом, пространство является векторным пространством.

Заметим, что элементами некоторых пространств могут быть не только векторы, но и различные другие объекты. Так, например, линейным пространством является множество всех квадратных матриц одинакового размера (объясните почему!). Несложно показать, что линейным будет пространство всех алгебраических многочленов степени, не превышающей натурального числа (проверьте выполнение свойств 1-8). В тоже время, множество всех многочленов фиксированной степени не является линейным пространством, т.к. сумма двух таких многочленов может оказаться многочленом более низкой степени.

 

 







Дата добавления: 2015-08-12; просмотров: 379. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия