Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Часть 2. Векторная алгебра





2.1. Пространства

Обозначим через множество упорядоченных наборов по действительных чисел: , . Сами такие наборы называются - мерными векторами.

Рассмотрим -мерные векторы и . Два вектора и называются равными, если равны их соответствующие координаты: ,

Введем на множестве линейные операции.

 

Суммой двух векторов и называется вектор, координаты которого равны суммам соответствующих координат векторов и :

.

 

Произведением вектора на действительное число называется вектор, координаты которого равны произведению числа на соответствующие координаты вектора :

.

Линейные операции над векторами удовлетворяют свойствам:

1. 5.

2. 6.

3. 7.

4. 8.

где , - произвольные действительные числа, - нулевой вектор, – вектор, противоположный к вектору .

 

Множество , с введенными на нем линейными операциями, называется пространством .

Если линейные операции удовлетворяют указанным выше восьми свойствам, то соответствующее пространство называется линейным или векторным пространством. Таким образом, пространство является векторным пространством.

Заметим, что элементами некоторых пространств могут быть не только векторы, но и различные другие объекты. Так, например, линейным пространством является множество всех квадратных матриц одинакового размера (объясните почему!). Несложно показать, что линейным будет пространство всех алгебраических многочленов степени, не превышающей натурального числа (проверьте выполнение свойств 1-8). В тоже время, множество всех многочленов фиксированной степени не является линейным пространством, т.к. сумма двух таких многочленов может оказаться многочленом более низкой степени.

 

 







Дата добавления: 2015-08-12; просмотров: 379. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия