Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КРИВЫЕ И ПОВЕРХНОСТИ NURBS





 

Начнем с рассмотрения NURBS-кривых, поскольку это дает базовое понимание В-сплайнов, а затем обобщим их на поверхности. В общем случае В-сплайн состоит из нескольких сплайновых сегментов, каждый из которых определен как набор управляющих точек. Поэтому коэффициенты многочлена будут зависеть только от управляющих точек на рассматриваемом сегменте кривой. Этот эффект называется локальным управлением, поскольку перемещение управляющей точки будет влиять не на все сегменты кривой. Рис. 6. показывает, как управляющие точки влияют на форму кривой.

Рис. 6. В-сплайн с управляющей точкой Р4 в нескольких положениях

 

Рассмотрим различные виды В-сплайнов.

В-сплайн интерполирует набор из р+1 управляющей точки , и состоит из р-(n-1) сегментов кривой . Кроме того, мы можем определить общий параметр t, нежели отдельный для каждого сегмента в интервале от 0 до 1. Таким образом, для каждого сегмента кривой t будет принадлежать интервалу . Более того, на каждый сегмент будет влиять ровно n управляющих точек от до .

Для каждого i >= n существует узел между и для значения ti параметра t. Для В-сплайна существует p-n-2 узлов. Отсюда исходит понятие однородности: если узлы равномерно распределены на интервале от 0 до 1, т.е. , то говорят, что В-сплайн равномерный. В противном случае – неравномерный. Стоит также обратить внимание на факт, что эти определения касаются узлов, возрастающих по значению, т.е. .

Теперь предположим, что координаты (x, y, z) точки кривой представлены в виде рациональной дроби. В этом случае говорят, что В-сплайн рациональный, иначе – нерациональный:

Подводя итог, можно указать на существование 4 типов В-сплайнов:

- равномерные нерациональные;

- неравномерные нерациональные;

- равномерные рациональные;

- неравномерные рациональные.

Последний тип и представляет собой NURBS как наиболее общий случай В-сплайнов.

Теперь рассмотрим математическое описание NURBS. NURBS кривая и поверхность соответственно выражаются следующими двумя параметрическими уравнениями:

где Рi - управляющая точка, Wi - ассоциированный с ней вес и - базовая функция, определенная рекурсивно следующим образом:

Из формул видно, что точка кривой (поверхности) является средневзвешенных управляющих точек, причем удельный вес каждой точки зависит от одного (двух – для поверхности) параметра.

Как видно, NURBS имеют явные преимущества по сравнению со всеми описанными выше сплайнами. Следует также обратить внимание, что сплайны Безье – это NURBS, у которого веса всех управляющих точек равны 1 и который состоит из 1-го сплайнового сегмента.

Таким образом, NURBS имеет все преимущества Безье-сплайнов, а также следующие:

- возможность локального управления кривизной сплайна;

- наличие весов для управляющих точек, делающих сплайны еще более гибкими.

Единственный недостаток – это несколько более сложное математическое описание NURBS по сравнению с Безье сплайнами, однако порядок этого усложнения не высок.

 







Дата добавления: 2015-09-04; просмотров: 841. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия