КРИВЫЕ И ПОВЕРХНОСТИ NURBS
Начнем с рассмотрения NURBS-кривых, поскольку это дает базовое понимание В-сплайнов, а затем обобщим их на поверхности. В общем случае В-сплайн состоит из нескольких сплайновых сегментов, каждый из которых определен как набор управляющих точек. Поэтому коэффициенты многочлена будут зависеть только от управляющих точек на рассматриваемом сегменте кривой. Этот эффект называется локальным управлением, поскольку перемещение управляющей точки будет влиять не на все сегменты кривой. Рис. 6. показывает, как управляющие точки влияют на форму кривой. Рис. 6. В-сплайн с управляющей точкой Р4 в нескольких положениях
Рассмотрим различные виды В-сплайнов. В-сплайн интерполирует набор из р+1 управляющей точки Для каждого i >= n существует узел между Теперь предположим, что координаты (x, y, z) точки кривой представлены в виде рациональной дроби. В этом случае говорят, что В-сплайн рациональный, иначе – нерациональный: Подводя итог, можно указать на существование 4 типов В-сплайнов: - равномерные нерациональные; - неравномерные нерациональные; - равномерные рациональные; - неравномерные рациональные. Последний тип и представляет собой NURBS как наиболее общий случай В-сплайнов. Теперь рассмотрим математическое описание NURBS. NURBS кривая и поверхность соответственно выражаются следующими двумя параметрическими уравнениями: где Рi - управляющая точка, Wi - ассоциированный с ней вес и Из формул видно, что точка кривой (поверхности) является средневзвешенных управляющих точек, причем удельный вес каждой точки зависит от одного (двух – для поверхности) параметра. Как видно, NURBS имеют явные преимущества по сравнению со всеми описанными выше сплайнами. Следует также обратить внимание, что сплайны Безье – это NURBS, у которого веса всех управляющих точек равны 1 и который состоит из 1-го сплайнового сегмента. Таким образом, NURBS имеет все преимущества Безье-сплайнов, а также следующие: - возможность локального управления кривизной сплайна; - наличие весов для управляющих точек, делающих сплайны еще более гибкими. Единственный недостаток – это несколько более сложное математическое описание NURBS по сравнению с Безье сплайнами, однако порядок этого усложнения не высок.
|