Испытания и события
Выше событие названо случайным, если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальнейшем, вместо того чтобы говорить «совокупность условий S осуществлена», будем говорить кратко: «произведено испытание». Таким образом, событие будет рассматриваться как результат испытания. Пример 1. Стрелок стреляет по мишени, разделенной на четыре области. Выстрел—это испытание. Попадание в определенную область мишени—событие. Пример 2. В урне имеются цнетные шары. Из урны наудачу берут один шар. Извлечение шара нз урны есть испытание. Появление шара определенного цвета — событие. Виды случайных событий События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. Пример 1. Из ящика с д«./алями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События «появилась стандартная деталь» и «появилась нестандартная деталь» — несовместные. Пример 2. Брошен а монета. Появление «герба» исключает появление надписи. События «появился герб» и «появилась надпись» — несовместные. Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, 2 — 2730\7 если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее. Пример 3. Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий: «выигрыш выпал на первый билет и не выпал на второй», «выигрыш не выпал на первый билет и выпал на второй», «выигрыш выпал на оба билета», «на оба билета выигрыш не выпал». Эти события образуют полную группу попарно несовместных событий. Пример 4. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу. События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое. Пример 5. Появление «герба» и появление надписи при бросании монеты — равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не оказывает влияния на выпадение той или нной стороны монеты. Пример в. Появление того или иного числа очков на брошенной игральной кости—равиовозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет фэрму правильного многогранника и наличие очков не оказывает влияния на выпадение любой грани.
|