Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрические вероятности





Чтобы преодолеть недостаток классического опре­деления вероятности, состоящий в том, что оно непри­менимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности — вероятности попа­дания точки в область (отрезок, часть плоскости и т. д.).

Пусть отрезок I составляет часть отрезка L. На отре­зок L наудачу поставлена точка. Это означает выполне­ние следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок I пропорциональна длине этого отрезка и не зависит от его расположения относи­тельно отрезка L. В этих предположениях вероятность попадания точки на отрезок I определяется равенством

Р = Длина //Длина L.

Пример 1. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший нз отрезков ОВ и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине от­резка и не зависит от его расположения на числовой оси.

Решение. Разобьем отрезок О А точками С и D иа 3 равные части. Требование задачи будет выполнено, если точка В (х) попа­дет на отрезок CD длины L/3. Искрмая вероятность

P — (L/3)/L = 1/3.

Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Это означает выполнение следующих предположений: брошен­ная точка может оказаться в любой точке фигуры G, вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. В этих предположениях вероятность попадания точки в фигуру g определяется равенством

Р = Площадь g/Площадь G.

Пример 2. На плоскости начерчены две концентрические окруж­ности, радиусы которых 5 и 10 см соответственно. Найти вероят­ность того, что точка, брошенная наудачу в большой круг, попадет в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения относительно большого круга.

Решение. Площадь кольца (фигуры g)

Sg = n(Ю2 —5*) = 75я.

Площадь большого круга (фигуры (?)

So = «102= 100я.







Дата добавления: 2015-09-06; просмотров: 1249. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия