Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение показательного распределения





Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной вели­чины Ху которое описывается плотностью

.. _ (0 при х<0,

\ при х^О,

где К — постоянная положительная величина.

Мы видим, что показательное распределение опреде­ляется одним параметром X. Эта особенность показа­тельного распределения указывает на его преимущество

по сравнению с распределениями, зависящими от боль­шего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближенные значе­ния); разумеется, проще оценить один параметр, чем два или три и т. д. Примером непрерывной случайной вели­чины, распределенной по показательному закону, может служить время между появлениями двух последователь­ных событий простейшего потока (см. § 5).

Найдем функцию распределения показательного закона (см. гл. XI, § 3):

Х Ох

F(x) = J f(x)dx= ^ Odx + К § e~kxdx= 1—е~Хх.

Итак,




Мы определили показательный закон с помощью плот­ности распределения; ясно, что его можно определить, используя функцию распределения.

Графики плотности и функции распределения показа­тельного закона изображены на рис. 12.

Пример. Написать плотность и функцию распределения показа­тельного закона, если параметр А, = 8.







Дата добавления: 2015-09-06; просмотров: 486. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия