В. Характеристическое свойство показательного закона надежности
Показательный закон надежности весьма прост и удобен для решения задач, возникающих на практике. Очень многие формулы теории надежности значительно упрощаются. Объясняется это тем, что этот закон обладает следующим важным свойством: вероятность безотказной работы элемента на интервале времени длительностью t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t (при заданной интенсивности отказов Я). Для доказательства свойства введем обозначения событий: А —безотказная работа элемента на интервале (0, /„) длительностью t0; В —безотказная работа на интервале (*о> *о + 0 длительностью t. Тогда АВ —безотказная работа на интервале (0, ^0 + 0 Длительностью t0 + t. Найдем вероятности этих событий по формуле (*) (см. § 5): Р(Л) = е-*'«, Р(В)=е-^, Р (АВ) = е-*- = e-x<oe_w. Найдем условную вероятность того, что элемент будет работать безотказно на интервале (/0, <0 + 0 ПРИ условии, что он уже проработал безотказно на предшествующем интервале (0, t 0) (см. гл. III, § 2): р Р(АВ) - е 6 -с “л\а) Р (А) ~~ е Полученная формула не содержит (0, а содержит только t. Это и означает, что время работы на предшествующем интервале не сказывается на величине вероятности безотказной работы на последующем интервале, а зависит только от длины последующего интервала, что и требовалось доказать. Полученный результат можно сформулировать несколько иначе. Сравнив вероятности Р (В) = е~х/ и РА (В)=е-Л/, заключаем: условная вероятность безотказной работы элемента на интервале длительностью t, вычисленная в предположении, что элемент проработал безотказно на предшествующем интервале, равна безусловной вероятности. Итак, в случае показательного закона надежности безотказная работа элемента «в прошлом» не сказывается на величине вероятности его безотказной работы «в ближайшем будущем». Замечание. Можно доказать, что рассматриваемым свойством обладает только показательное распределение. Поэтому если на практике изучаемая случайная величина этим свойством обладает, то она распределена по показательному закону. Например, при допущении, что метеориты распределены равномерно в пространстве и во времени, вероятность попадания метеорита в космический корабль не зависит от того, попадали или не попадали метеориты в корабль до начала рассматриваемого интервала времени. Следовательно, случайные моменты времени попадания метеоритов в космический корабль распределены по показательному закону. Задачи 1. Написать функцию распределения F (х) н плотность вероятности /( х) непрерывной случайной величины X, распределенной по показательному закону с параметром Я = 5. Отв. f (jc) =5e~6jc при JtSsO; f(x) =0 при х < 0; F(x) = l—е-**. Непрерывная случайная величина X распределена по показательному закону: ((x) = 5e~Sx при *5*0, f(x)=0 при * < 0. Найти вероятность того, что в результате испытания X попадет в интервал (0,4, 1). Отв. Р (0,4 < X < I) =0,13. Непрерывная случайная величина X распределена по показательному закону f (x) = te~*x (х > О). Найти математическое ожидание, среднее квадратическое отклонение и дисперсию X. Отв. М (X) = о ( X ) = 0,25; D {X) = 0,0625. Время безотказной работы элемента распределено по показательному закону /(0 = 0,01 e-°.01t (t > 0), где / — время, ч. Найти вероятность того, что элемент проработает безотказно 100 ч. Отв. R (100) = 0,37.
|