Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних
Пусть из генеральной совокупности (в результате независимых наблюдений над количественным признаком X) извлечена повторная выборка объема п со значениями признака xlt х2, ..., хп. Не уменьшая общности рассуждений, будем считать эти значения признака различными. Пусть генеральная средняя хг неизвестна и требуется оценить ее по данным выборки. В качестве оценки генеральной средней принимают выборочную среднюю х„ = (х1 + х2 +... +х„)/п. Убедимся, что хв — несмещенная оценка, т. е. покажем, что математическое ожидание этой оценки равно хг. Будем рассматривать хв как случайную величину и xlt х2,.. хп как независимые, одинаково распределенные случайные величины Х1г Х2, ..., Хп. Поскольку эти величины одинаково распределены, то они имеют одинаковые числовые характеристики, в частности одинаковое математическое ожидание, которое обозначим через а. Так как математическое ожидание среднего арифметического одинаково распределенных случайных величин равно математичес- кому ожиданию каждой из величин (см. гл. VIII, § 9), то М(Х.) = М[(Х1 + Х,+...+Хп)/п] = а (*) Приняв во внимание, что каждая из величин Хх, Х2,... Хп имеет то же распределение, что и генеральная совокупность (которую мы также рассматриваем как случайную величину), заключаем, что и числовые характеристики этих величин и генеральной совокупности одинаковы. В частности, математическсе ожидание а каждой из величин равно математическому ожиданию признака X генеральной совокупности, т. е. М (Х) = хг *=а. Заменив в формуле (*) математическое ожидание а на хт, окончательно получим М (Хв) = хг. Тем самым доказано, что выборочная средняя есть несмещенная оценка генеральной средней. Легко показать, что выборочная средняя является и состоятельной оценкой генеральной средней. Действительно, допуская, что случайные величины Х1г Х2, ..., Хп имеют ограниченные дисперсии, мы вправе применить к этим величинам теорему Чебышева (частный случай), в силу которой при увеличении п среднее арифметическое рассматриваемых величин, т. е. Хь, стремится по вероятности к математическому ожиданию а каждой из величин, или, что то же, к генеральной средней хг (так как хГ = а). Итак, при увеличении объема выборки п выборочная средняя стремится по вероятности к генеральной средней, а это и означает, что выборочная средняя есть состоятельная оценка генеральной средней. Из сказанного следует также, что если по нескольким выборкам достаточно большого объема из одной и той же генеральной совокупности будут найдены выборочные средние, то они будут приближенно равны между собой. В этом и состоит свойство устойчивости выборочных средних. Заметим, что если дисперсии двух одинаково распределенных совокупностей равны между собой, то близость выборочных средних к генеральным не зависит от отношения объема выборки к объему генеральной совокупности. Она зависит от объема выборки: чем объем выборки больше, тем меньше выборочная средняя отличается от генеральной. Например, если из одной совокупности отобран 1 % объектов, а из другой совокупности отобрано 4% объектов, причем объем первой выборки оказался большим, чем второй, то первая выборочная средняя будет меньше отличаться от соответствующей генеральной средней, чем вторая. Замечание. Мы предполагали выборку повторной. Одияко полученные выводы применимы и для бесповторной выборки, если ее объем значительно меньше объема генеральной совокупности. Это положение часто используется на практике.
|