Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Известно, что корреляционная функция стационарной случайной функции





ЬхЮ = М[к (f)*(f + T)].

Таким образом, оценить kx(т) означает оценить мате­матическое ожидание функции к (f) X (f + г), поэтому можно воспользоваться соотношением (*), учи­тывая, что функция ^(/ + т) определена при / + т^Г и, следовательно, t —т.

Итак, в качестве оценки корреляционной функции эргодической стационарной случайной функции принимают

Г-Т

= J °x(t)x(t + i)dt (**)

о

Либо, что равносильно,

Г-х


Практически интегралы вычисляют приближенно, на­пример по формуле прямоугольников. С этой целью делят интервал (О, Т) на п частичных интервалов длиной At = Т/п\ в каждом частичном i-м интервале выбирают одну точку, например его середину В итоге оценка (*) принимает вид

П

тп*х =4-[>(/1) At + х(*2) Л* + • • • +*(*„) Д*] = -у- X, x(ti).

i= 1

Учитывая, что At —Т/п, окончательно получим

Аналогично приближенно вычисляют интеграл (**), полагая, что т принимает значения At, 2 At,..., (п — 1) At, или, что то же, Т/п, 2 Т/п, ЗТ/п, ( п \)Т/п. В итоге оценки корреляционной функции (**•) и (*•*•*•) принимают соответственно вид:

П—1

к (i S * (*.■) *

' i=l n — l

k\(l =-^rrS;c(^)^(^+/)—M2,

где I = 1, 2,..., n — 1.

Замечание. Можно показать, что оценка (*) — несмещенная, т. е. м\т*^\ — тх\ оценка (**) — асимптотически несмещенная, т. е.

lim М [/£(т)] = /гх(т). т —► ® —

Задачи

Является ли стационарной случайная функция X (/) = = t*U, где U —случайная величина, причем: а) таФ О, б) тв = О?

Отв. а) Нет: тх (t) Ф const; б) Нет: корреляционная функция зависит не от разности аргументов, а от каждого нз ннх.

Стационарна ли случайная функция X (/) = sin (< + ф). где Ф — случайная величина, распределенная равномерно в интервале (О, 2я)?

Отв. Да: тх (0 = 0 = const, Kx(ii, /а) = 0,5 cos (/а ix).

Известно, что если ф — случайная величина, распределенная равномерно в интервале (0, 2п), то случайная функция X (t) = = ein (^ —f-ф) — стационарная. Можно лн отсюда непосредственно Заключить, что случайная функция Y (<)=cos (< + ф) также стацио­нарна?

Отв. Можно: изменив начало отсчета аргумента, например на п/2, стационарной функции X (/)» получим функцию Y (t).

Задана случайная функция X (<)= < + U eln <+ V cos t, где U и V —случайные величины, причем М ( U) — M (V)=0, D (U)=D (V)— 5, M (UV)=0. Доказать, что: а) X (() — нестационарная функция; б) X (t) — стационарная функция.

Отв. а) тх (t)Ф const; б) /я» (/) = const, Kx(tlt /,) = 5cos{/2 tt).

Известна корреляционная функция kx (т) = 3е-*т" стационар­ной случайной функции X (<). Найти корреляционную функцию слу­чайной функции У (t)=5X (I).

Отв. kv(x)=75e~sx\

в. Задана корреляционная функция кх (т) = 2е-*т* стационарной случайной функции X (<)• Найти нормированную корреляционную функцию.

Отв. рх(т) = е\

Заданы две стационарные случайные функции X (/)=cos (2/-)-ф) и У (<)== sin (2/ + ф), где ф—случайная величина, распределенная равномерно в интервале (0, 2л). Доказать, что заданные функции стационарно связаны.

Отв. Rxv(ti, f,) = 0,5ein 2 (/*—<i).

Задана корреляционная функция кх (т) = 6е~®’*т стационарной случайной функции X (<)• Найти: а) корреляционную функцию; б) дисперсию производной X' (t) = x.

Отв. а) *. (t) = 0124e-0•*г, (1 —0,4х*); б) ZX = 0,24.

а

Задана корреляционная функция kx (т) = е~т стационарной случайной функции X ( t ). Найти взаимные корреляционные функции случайной функции X (/) н ее производной.

Отв. г. (т) =—2те*; т. (т) = 2те\

XX XX ' '

Задана корреляционная функция йЛ(т) = е“'г' стационарной

t

случайной функции X (<). Найти дисперсию интеграла Y (0=^ X (s)ds,

о

Отв. Dv(t) = 2(t + e-*—l).







Дата добавления: 2015-09-06; просмотров: 841. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия