Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выполнив умножение и вынеся неслучайные множители за знак математического ожидания, найдем





RXl х, (tlt tf2) == cos t cos t M{UlU2) +

+ sin «Vi cos (UfV,) + sin o)8/g cos со1/1M (t/^,) -j- + sin sin (V^V^).

Случайные величины Ult U2, Vlt V2 попарно не корре* лированы, поэтому их корреляционные моменты равны нулю; отсюда следует, что все математические ожидания парных произведений этих величин равны нулю. Напри­мер, корреляционный момент величин иг и Ut равен нулю: = М (UYU2) — 0; так как эти величины центрирован­ные (см. п. 1), то М (иги2) — 0.

Итак, взаимная корреляционная функция RXtx,{tlt t г) = = 0, что н требовалось доказать.

Дискретный спектр стационарной случайной

Функции

А. Частоты — произвольные числа, количество их конечно. Пусть стационарная случайная функция X (t) может быть представлена в виде спектрального разло­жения

П п

Х(/) = 0= Sti/fCosa^ + ^.sin©,.*], (*)

t=i i=i

причем сохраняются допущения, указанные в начале п. 2 (см. § 1). Найдем дисперсию одной гармоники X,- (/), учитывая, что случайные величины Ut и Vt не коррели- рованы и дисперсии величин с одинаковыми индексами равны между собой: D ((/,•) = D (У,-) — Di

D [X, «)] = D [Ui cos а),/ + Vi sin to,/] = D [{/,• cos to,-/] -j- -j- D \Vt sin а)(Л] = cos2 to (tD ((/,■) + sin2 <off D (1Л) =

= (cos2 + sin2 to,/) Dt

Итак,

D[X,(0] = O,-. (**)

Таким образом, дисперсия t'-й гармоники спектраль­ного разложения (*) равна дисперсии случайной вели­чины Uit или, что то же, дисперсии случайной величины К,-.

Найдем теперь дисперсию стационарной случайной функции X (/), приняв во внимание, что слагаемые X, ( t ) не коррелированы (см. § 1) и поэтому дисперсия их суммы равна сумме дисперсий слагаемых (см. гл. XXIII, § 15, замечание 2):

D [X (0] = D Г S X,. (ol = 2 D [Xt.

L* = 1 J i = l

Используя (**), окончательно получим

D [*(/)] =2 д..

Итак, дисперсия стационарной случайной функции, которая может быть представлена в виде суммы конеч­ного числа гармоник с произвольными частотами, равна сумме дисперсий составляющих ее гармоник.

Дискретным спектром стационарной случайной функ­ции X (t) вида (*•) называют совокупность дисперсий всех составляющих ее гармоник.

Заметим, что поскольку каждой частоте со,- можно поставить в соответствие дисперсию Д-, то спектр можно изобразить графически: на горизонтальной оси отклады­вают частоты со,-, а в качестве соответствующих ординат (их называют спектральными линиями) строят диспер­сии D,-. Этот дискретный спектр называют линейчатым .







Дата добавления: 2015-09-06; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия