Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Спосіб обертання навколо проеціюючої прямої





Частковим випадком плоско-паралельного переміщення є обертання фігури навколо осі, перпендикулярної до однієї з площин проекцій. При цьому всі точки фігури рухаються (переміщуються) по колах у площинах рівня, перпендикулярних до осі обертання. Центри кіл знаходяться в точках перетину осі із вказаними площинами. Якщо точка фігури знаходиться на осі обертання, то при обертанні системи ця точка вважається нерухомою.

Таким чином, при обертанні навколо горизонтально-проеціюючої осі, фронтальні проекції точок фігури переміщуються по прямих, перпендикулярних до ліній зв'язку, а горизонтальні – по дугах кіл (рис. 4.11, а).

Під час обертання навколо фронтально-проеціюючої прямої горизонтальні проекції точок переміщуються по прямих, перпендикулярних до ліній зв'язку, а фронтальні – по дугах кіл (рис. 4.11, б).

Розв'язуючи задачі способами обертання, треба вміти показувати на кресленні такі основні елементи обертання:

1) Вісь обертання ί – пряму, навколо якої обертається точка. Вісь обертання (ί) беруть перпендикулярною до площин проекцій П1 або П2.

2) Площину обертання S, тобто площину, в якій переміщується точка і яка перпендикулярна до осі обертання ί.

 

а б

 

Рис. 4.11

 

Якщо вісь обертання перпендикулярна П1, то площина обертання буде горизонтальною. Якщо вісь обертання перпендикулярна П2, то площина обертання буде фронтальною.

3) Центр обертання – точка О перетину осі з площиною обертання О = S Ç ί.

4) Радіус обертання Rоб. – відстань точки від центра обертання. Радіус обертання проеціюється в натуральну величину на ту площину проекцій, перпендикулярно до якої вибрано вісь обертання.

 

Приклад 1. Перетворити пряму загального положення в проеціюючу пряму, визначити натуральну величину її відрізка АВ (рис. 4.12).

Під час обертання прямої навколо осі доводиться обертати дві її точки. Побудова спрощується, якщо вісь обертання провести через одну з кінцевих точок відрізка: вісь ί проводимо через точку В q ^ П2. Щоб визначити натуральну величину відрізка АВ, обертаємо його фронтальну проекцію до положення паралельного Х12. Таким чином відрізок АВ став горизонталлю, а горизонтальна проекція `В11 є його натуральною величиною. Для перетворення відрізка в проеціююче положення здійснюємо обертання відрізка АВ навколо горизонтально-проеціюючої осі ί (ί ^ П1). Обертаємо горизонтальну проекцію до положення `А11 ^ Х12. Фронтальна проекція відрізка стане точкою: А 2 º В2.

 

Рис. 4.12

 

Приклад 2. Визначити натуральну величину DАВС. DАВС – площина загального положення (рис. 4.13).

 

Рис. 4.13

 

Перетворення виконуємо послідовним подвійним обертанням. Спочатку перетворюємо площину загального положення в проеціюючу площину. Для цього в площині DАВС проводимо одну із ліній рівня – h або f і обертаємо її до положення, коли вона стане перпендикулярною площині проекцій. При цьому лінія рівня спроеціюється в точку, а площина – в лінію.

Потім площину обертаємо навколо іншої проеціюючої прямої до положення, коли площина стане паралельною площині проекцій. На цю площину вона спроеціюється в натуральну величину.

Обертання навколо лінії рівня (спосіб суміщення)

Обертання навколо горизонталі або фронталі застосовують, коли задану плоску фігуру потрібно сумістити з площиною рівня, паралельною площині проекцій. У такому положенні плоска фігура проеціюється на відповідну площину проекцій у натуральну величину.

Розглянемо спочатку обертання точки О відрізка прямої ОВ навколо горизонталі (рис. 4.14, а). Суть перетворення залишається такою ж, як і у випадку обертання навколо осей, які перпендикулярні до площин проекцій.

а б

Рис. 4.14

 

Під час обертання навколо h точка В описує дугу кола в площині обертання γ. Площина обертання γ перпендикулярна до осі обертання: γ ^ h. Таким чином, γ є горизонтально-проеціюючою площиною: γ ^ П1. Центр обертання – точка О. О = γ Ç h. Радіус обертання точки В (ВО – відрізок прямої загального положення) знаходиться у площині γ. Якщо радіус обертання точки В стане паралельним П1, то він суміститься з площиною рівня, паралельно до П1, в якій знаходиться вісь обертання h. У цій самій площині рівня опиниться і точка В Î R. Способом прямокутного трикутника визначаємо натуральну величину радіуса обертання точки В навколо h. Натуральну величину радіуса обертання відкладаємо від точки В1 на γ1 (або за допомогою циркуля горизонтальну проекцію точки переміщуємо в нове положення В1). В новому положенні точка В знаходиться з горизонталлю h в одній площині, яка паралельна П1. Друга проекція `В2 в цьому випадку буде збігатися з проекцією h – h2.

Даний спосіб має обмежене використання. Він корисний, наприклад, якщо потрібно визначити натуральну величину плоскої фігури.

Приклад: Визначити натуральну величину DАВС площини загального положення (рис. 4.14, б).

Для визначення натуральної величини DАВС, через точки А і l проводимо горизонталь площини. Ці точки при обертанні будуть нерухомими, оскільки вони знаходяться на осі обертання h. Обертатись будуть лише точки В і С. Вони переміщуються по колах у площинах обертання, перпендикулярних до осі обертання h.

Для визначення положення точки `В1 після обертання, знаходимо натуральну величину радіуса обертання точки В навколо горизонталі h і цим радіусом переводимо горизонтальну проекцію точки В в нове положення. Аналогічні побудови виконуємо для точки С.

Проекція Ā1В1С1 є натуральною величину DАВС, оскільки площина DАВС стала паралельною П1. Фронтальна проекція DАВС збігається з фронтальною проекцією h2 горизонталі, тобто являє собою пряму лінію.

Запитання і завдання для самоперевірки

1. Які є способи перетворення креслення та які їх основні відмінності?

2. У чому полягає сутність способу заміни площин проекцій?

3. Укажіть направлення площин проекцій при переведені площини загального положення у горизонтально-проецююче.

4. Укажіть алгоритм розв’язку задачі на визначення справжньої величини площини загального положення способом заміни площин проекцій.

5. У чому полягає сутність способу обертання навколо проеціювальної прямої?

6. Яку пряму приймають за вісь обертання при переведенні площини загального положення у горизонтально-проецююче?

7. Яку пряму приймають за вісь обертання при переведенні площини загального положення у фронтально-проецююче?

8. У чому сутність способу плоско-паралельного переміщення? Які перетворення необхідно здійснити, щоб визначити справжню величину площини загального положення?

9. З якою метою використовується в нарисній геометрії спосіб допоміжного проеціювання?

10. Чи можна за допомогою способів перетворення площин проекцій встановити кут нахилу площини загального положення?

11. Чи можна способом обертання відрізка прямої встановити його довжину і кути нахилу до площин проекцій П1 і П2? Яка з проекцій відрізка прямої лінії не змінює своєї величини?

 







Дата добавления: 2015-09-07; просмотров: 3935. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия