Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Билет 75 Собственные векторы и собственные значения линейного оператора





ненулевой вектор называется собственным вектором линейного оператора , если существует такое число , что выполняется равенство: . Число называется собственным значением оператора , отвечающим собственному вектору .

Множество собственных значений линейного оператора называется его спектром.

Рассмотрим матрицу оператора в некотором базисе:

Тогда соотношение или (), эквивалентно следующему:

Это есть однородная система ого порядка, всегда имеющая нулевое решение . По правилу Крамера она будет иметь ненулевые решения тогда и только тогда, когда ее определитель равен нулю, т.е.

(1)

Итак, собственные числа являются корнями алгебраического уравнения ого порядка (1), которое называется характеристическими уравнением, а его левая часть - характеристическим многочленом.

Заметим, что собственные значения не зависят от выбора базиса, в котором записывается матрица оператора .

Пусть - собственное значение, т.е. решение характеристического уравнения (1). Тогда собственный вектор , отвечающий этому собственному значению, будет решением однородной системы

(2)

Так как множество решений линейной однородной системы является линейным пространством, то для нахождения собственных векторов , отвечающих собственному значению , достаточно найти базис этого пространства.

 

 

 

 







Дата добавления: 2015-09-07; просмотров: 592. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия