Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Билет 68 Ортогональное дополнение





Ортогональным дополнением непустого подмножества евклидова пространства называется множество векторов, ортогональных каждому вектору из . Ортогональное дополнение обозначается

Рассмотрим примеры ортогональных дополнений евклидова пространства.

1. Ортогональным дополнением нулевого подпространства служит все пространство . Ортогональным дополнением всего пространства является его нулевое подпространство .

2. Пусть в пространстве радиус-векторов (с началом в точке ) за даны три взаимно перпендикулярных радиус-вектора , и . Тогда ортогональным дополнением вектора является множество радиус- векторов на плоскости, содержащей векторы и , точнее,. Ортогональным дополнением векторов и служит множество радиус-векторов на прямой, содержащей вектор. Ортогональным дополнение трех заданных векторов служит нулевой радиус-вектор:.

3. В пространстве многочленов степени не выше второй со скалярным произведением (8.29) задано подмножество - многочленов нулевой степени. Найдем ортогональное дополнение этого подмножества. Для этого приравняем нулю скалярное произведение многочлена на постоянный многочлен . Поскольку величина произвольная, то . Следовательно, ортогональным дополнением подмножества является множество многочленов из с нулевым свободным членом.

 

Билет 69 Линейные формы

Пусть X — линейное пространство. Линейное отображение l: XR называется линейной формой, или линейной функцией, или линейным функционалом. Это означает, что " x 1, x 2 Î X и " α; Î R

l(x 1 + x 2) = l(x 1) + l(x 2), l(αx 1) = α; l(x 1).

Теорема 1. Множество линейных форм (функций), заданных на X, является линейным пространством относительно операций

 
l = l1 + l2 ÜÞ " x Î X: l(x) = l1(x) + l2(x),
 

 

 
l = α;l1 ÜÞ " x Î X: l(x) = α; l1(x).
 

В качестве нулевого элемента l = θ выбирается линейная функция l(x) такая, что " x Î X l(x) = 0. Это пространство называется сопряженным к X и обозначается X *. Теорема 2. Размерности пространств X и X * равны. Пусть e 1, e 2, …, en — базис в Xn. Матрицей линейной формы называется матрица–строка

 
  æ è l(e 1), l(e 2), …, l(en) ö ø .
     
 

Обозначим l i = l(ei) коэффициенты (компоненты) линейной формы l(x) в базисе e 1, e 2, …, en. Тогда

 

l(x) =

n l(ei) xi
i = 1

=

n l i xi
i = 1

.

 

Преобразование коэффициентов линейной формы при переходе к новому базису. Пусть даны два базиса e 1, e 2, …, en и f 1, f 2, …, fn, связанные матрицей перехода C = (cik) по формуле f = e · C Þ l' = C · l. Отметим, что коэффициенты линейной формы преобразуются так же, как базисные векторы — посредством матрицы C. В то время как координаты векторов преобразуются посредством матрицы C − 1. Ядро линейной формы (линейного функционала) — линейное пространство. Оно называется гиперплоскостью.

Билет 70 Билинейные формы

Пусть X — линейное пространство.Функция b (x, y), осуществляющая отображение X × XR, называется билинейной формой, если она линейна по каждому аргументу, т.е. " x, y, z Î X и " α;, β; Î R

  b (α x + β y, z) = α b (x, z) + β b (y, z);  

 

  b (x, α y + β z) = α b (x, y) + β b (x, z).  

Билинейная форма называется симметричной, если " x, y Î X b (x, y) = b (y, x).Пусть e 1, e 2, …, en — базис в Xn. Тогда " x, y Î Xn

x =

n xi ei
i = 1

, y =

n yj ej
j = 1

.

Обозначим bij = b (ei, ej). Воспользовавшись линейностью b (x, y) по обоим аргументам, получим:

b (x, y) = b
æ ç è
n xi ei
i = 1

,

n yj ej
j = 1
ö ÷ ø
 

=

n xi yj b (ei, ej)
i, j = 1

=

n bij xi yj
i, j = 1

.

Квадратная матрица n –го порядка B = (bij) называется матрицей билинейной формы.

Обозначив X и Y координатные столбцы векторов x и y, билинейную форму можно записать в виде:

b (x, y) = X T · B · Y.






Дата добавления: 2015-09-07; просмотров: 703. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия