Алгебраическая форма записи комплексного числа. Арифметические операции с комплексными числами в алгебраической форме записи.
Ко́мпле́ксные чи́сла — расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма , где и — вещественные числа, — мнимая единица. Запись комплексного числа в виде , , называется алгебраической формой комплексного числа. Сумма и произведение комплексных чисел могут быть вычислены непосредственным суммированием и перемножением таких выражений, как обычно раскрывая скобки и приводя подобные, чтобы представить результат тоже в стандартной форме (при этом надо учесть, что ):
Свойство сложени: Сумма двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число вида z=z1+z2= a+bi + c+di = a+c +(b+d)i Свойство вычитания: Разность двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число вида z=z1−z2= a+bi − c+di = a−c +(b−d)i Свойство умножения: Произведение двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число вида z=z1 z2= a+bi c+di = ac−bd +(ad+bc)i Свойство деления: Частное двух комплексных чисел z1=a+bi и z2=c+di будет комплексное число вида z=z2z1=c+dia+bi=c2+d2ac+bd+c2+d2bc−adi
|