Тригонометрическая форма записи комплексного числа. Формула Муавра.
Если вещественную и мнимую части комплексного числа выразить через модуль и аргумент (, ), то всякое комплексное число , кроме нуля, можно записать в тригонометрической форме
Эта формула позволяет возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид: где — модуль, а — аргумент комплексного числа. В современной символике она опубликована Эйлером в 1722 году. Приведенная формуле справедлива при любом целом n, не обязательно положительном.
|