Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На дом.№ 4118, 4122, 4125.





Решение дифференциального уравнения

(4.1)

называется особым, если в каждой его точке нарушается свойство единственности, т.е. если через каждую его точку , кроме этого решения, проходит и другое решение, имеющее в точке ту же касательную, но не совпадающее с решением в сколь угодно малой окрестности точки . График особого решения будем называть особой интегральной кривой.

Если две кривые и имеют общую точку и в этой точке общую касательную, то говорят, что кривые касаются в этой точке.

Условия касания кривыx в т. :

.

Кривая, которая касается каждой кривой семейства

в одной или нескольких точках и притом вся состоит из точек касания, называется огибающей данного семейства.

Теорема. Пусть – семейство кривых, причем

в точке .

Тогда в некоторой окрестности точки точки, лежащие на огибающей этого семейства кривых, удовлетворяют системе:

(4.2)

Замечание. Теорема утверждает, что если – огибающая, то всякая её точка удовлетворяет (4.2). Обратное неверно, т.е. определяемая (4.2) кривая может и не быть огибающей. (Теорема даёт лишь необходимое условие огибающей.) Из решений системы (4.2) огибающие отбираются непосредственной проверкой условий касания.

Если из уравнений системы (4.2) удается исключить параметр C, то уравнение огибающей получается в явном виде, как .

Пример 4.1. . Это уравнение описывает семейство окружностей радиуса , центры которых лежат на оси OX, а параметр есть смещение центров относительно начала координат.

Продифференцировав уравнение по параметру , получим . Подставив в уравнение и исключив тем самым параметр , получим , или иначе и - уравнения двух огибающих семейства кривых.

Красивый наглядный пример особого решения дает уравнение Клеро, имеющее вид

. (4.3)

При интегрировании его применим метод введения параметра. Приняв y'=p и подставив в (4.3), получим

. (4.4)

Далее, продифференцировав уравнение (4.4) по переменной , получим

,

откуда

.

Здесь либо 1) , либо 2) .

Из 1) следует . Подставив это в уравнение (4.4), получим - уравнение семейства прямых с угловым коэффициентом , пересекающих ось OY в точках . Используя 2), решение можно представить в параметрическом виде:

(4.5)

где . Нетрудно увидеть, что интегральная кривая, определяемая (4.5), является огибающей семейства прямых . Действительно, в этом случае и огибающая определяется уравнениями и , или

(4.5')

где , что отличается от (4.5) лишь обозначениями. Если удается исключить С из (4.5'), то особое решение можно получить в явном виде.

 

4119. Решить уравнение

. (4.6)

Решение. Подставим , получим

. (4.6')

Продифференцировав по , имеем

,

откуда

; ; ; .

Подставив в выражения для и , получим систему уравнений:

(4.7)

Подставив в первое уравнение, найдем

(4.8)

Это уравнение параболы, симметричной относительно оси OX. Семейство прямых, описываемых первым уравнением системы (4.7), есть семейство касательных к этой параболе. Таким образом, парабола (4.8) может рассматриваться как огибающая семейства собственных касательных. Такое геометрическое истолкование характерно для уравнения Клеро.







Дата добавления: 2015-09-07; просмотров: 406. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия