Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Другие виды уравнений, решаемых методом введения параметра.





А. Уравнение вида разрешимо относительно y:

.

Полагаем , тогда . Дифференцируем последнее уравнение и, заменив dy на pdx, получаем , откуда

и , .

Это общее решение дифференциального уравнения в параметрической форме.

Пример 4.2. Решить уравнение

(a и b – постоянные).

Решение. Положим , тогда ,

или ,

откуда

и .

Общее решение будет иметь вид:

.

В. Уравнение вида разрешимо относительно , т.е. . Полагая , получим . Кроме того, т.е. и . Проинтегрировав, найдем общее решение дифференциального уравнения в параметрической форме:

, .

 

Пример 4.3. Решить уравнение

Решение. Положим , тогда ,

В итоге

, .

 

4117. Решить уравнение .

Решение. Это уравнение Клеро. После введения параметра уравнение имеет вид:

. (4.9)

Взяв полный дифференциал и заменив на , получим:

, откуда .

Если , то . Подставив в (4.9), получаем

. (4.10)

Далее, подставив в уравнение , имеем

. (4.11)

Очевидно, что (4.11) может быть получено из (4.10) дифференцированием по параметру C, следовательно, в соответствии с изложенным ранее, система уравнений (4.10), (4.11) в параметрической форме описывает особое решение уравнения, графиком которого является огибающая семейства прямых, заданных общим решением (4.10). Исключив параметр C из системы уравнений (4.10), (4.11), найдем уравнение огибающей в явном виде:

.

Контрольные вопросы.

  1. Какое решение дифференциального уравнения называется особым?
  2. Что такое особая интегральная кривая?
  3. Какая кривая называется огибающей семейства кривых?
  4. Запишите общий вид уравнения Клеро, опишите метод решения.
  5. Перечислите некоторые типы уравнений, решаемых методом введения параметра.






Дата добавления: 2015-09-07; просмотров: 498. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия