Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На дом. № 4155, 4156, 4159, 4160, 4163, 4169, 4189, 4208.





Дифференциальное уравнение -го порядка имеет вид

, ,

или, если оно разрешено относительно ,

. (5.1)

Здесь функция переменной определена в некоторой области ,

а D – область в

Всякая функция , определенная и раз дифференцируемая на промежутке , называется решением этого уравнения, если она обращает его в тождество при подстановке.

Задача нахождения решения уравнения (5.1), соответствующего начальным условиям

(5.2)

называется задачей Коши для уравнения (5.1) (Здесь ). Условия (5.2) называются условиями Коши или начальными условиями.

Общим решением дифференциального уравнения -го порядка (5.1) называется множество всех его решений. Оно обычно представляется формулой , содержащей n произвольных независимых между собой постоянных , , таких, что, если заданы начальные условия (5.2), то могут быть найдены все значения , при которых

будет частным решением уравнения (5.1), удовлетворяющим условиям (5.2).

В процессе интегрирования уравнения -го порядка иногда удается получить уравнение более низкого порядка, эквивалентное исходному. Такое уравнение называется промежуточным интегралом.

Рассмотрим три вида дифференциальных уравнений, допускающих понижение порядка.

1. Уравнение вида . После -кратного интегрирования получается общее решение

 

Пример 5.1. Решить уравнение .

Решение. Интегрируя последовательно данное уравнение, имеем:

.

2. Уравнение, не содержащее искомой функции и её производных до порядка включительно:

.

Порядок уравнения можно понизить на k единиц заменой

.

Уравнение примет вид:

.

Из этого уравнения определяем

, ,

а затем из уравнения

находим y k -кратным интегрированием.

 

Пример 5.2. Решить уравнение .

Решение. Полагая , получаем , откуда

, .

Последовательно интегрируя, получаем:

,

3. Уравнение не содержит независимой переменной:

.

Подстановка позволяет понизить прядок уравнения на единицу. Производные выражаются через производные функции .

,

и т.д.

Подстановка этих выражений в уравнение приводит к понижению порядка на единицу.

 

Пример 5.3. Решить уравнение .

Решение. Уравнение не содержит независимой переменной x. Полагая , , получаем уравнение

Подстановкой оно сводится к линейному уравнению

,

общее решение которого

.

После обратной замены имеем

а после разделения переменных

, .

Проинтегрировав, получаем

откуда

.

Это общий интеграл данного уравнения.

 

4209. Решить уравнение .

Решение. Интегрируя уравнение последовательно три раза, получим:

, ,

,

Это и есть общее решение исходного уравнения.

 

4163. Решить уравнение .

Решение. Уравнение не содержит искомой функции , замена переменной позволит понизить порядок уравнения и оно примет вид

или ,

откуда

.

Проинтегрировав, получим

, .

Учтем, что , и продолжим интегрирование:

и

.

Это есть общее решение.

 

4171. Решить уравнение .

Решение. Уравнение не содержит переменной . Будем считать независимой переменной, а в качестве искомой функции примем

, тогда

Подставив всё в уравнение, получим:

откуда .

После интегрирования:

и наконец,

.

Контрольные вопросы.

  1. Запишите общий вид дифференциального уравнения -го порядка.
  2. Что называется общим решением дифференциального уравнения -го порядка?
  3. Перечислите три вида дифференциальных уравнений, допускающих понижение порядка.






Дата добавления: 2015-09-07; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия