Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разложение вектора по орторнормированному базису





Ортонормированный базис в двумерном пространстве – пара взаимно перпендикулярных единичных векторов, которые в совокупности с парой параметров однозначно выражают вектор в двумерном пространстве.

Вектор v может быть разложен по ортонормированному базису { b 1, b 2} следующим образом

v = C 1· b 1 + C 2· b 2 (1)

Коэффициенты C 1 и C 2 выражают величину вектора v в направлениях b 1 и b 2. Векторы C 1· b 1 и C 2· b 2 называются проекциями вектора v.

Рисунок 1

Выведем коэффициенты C 1 и C 2. Найдем скалярное произведение левой и правой частей равенства (1) и вектора b 1.

< v, b 1> = < C 1· b 1 + C 2· b 2, b 1> = < C 1· b 1, b 1> + < C 2· b 2, b 1> = C 1< b 1, b 1> + C 2< b 2, b 1>

Так как { b 1, b 2} – ортонормированный базис, скалярное произведение < b 1, b 1> равно 1 (квадрат нормы вектора b 1), а скалярное произведение < b 2, b 1> равно 0 (так как векторы b 2, b 1 перпендикулярны). Таким образом

C 1 = < v, b 1> (2)

Аналогичным образом найдем скалярное произведение левой и правой частей равенства (1) и вектора b 2.

< v, b 2> = < C 1· b 1 + C 2· b 2, b 2 > = < C 1· b 1, b 2> + < C 2· b 2, b 2> = C 1< b 1, b 2> + C 2< b 2, b 2>

Согласно свойствам ортонормированного базиса < b 1, b 2> = 0, < b 2, b 2> = || b 1||2 = 1, следовательно

C 2 = < v, b 2> (3)

 

Рассмотрим простейший пример.

Выясним, образуют ли векторы b 1 = (1, 0) и b 2 = (0, 1) ортонормированный базис. Для начала посчитаем нормы векторов b 1 и b 2 и убедимся в том, что они равны 1, т.е. векторы являются единичными.

|| b 1|| = = 1

|| b 2|| = = 1

Теперь посчитаем скалярное произведение векторов b 1 и b 2 и убедимся, что оно равно 0.

< b 1, b 2> = 1·0 + 0·1 = 0

Так как векторы b 1 и b 2 являются единичными и ортогональны (их скалярное произведение равно нулю) они образуют ортонормированный базис.

Теперь разложим по базису { b 1, b 2} вектор v = (2, 3)

C 1 = < v, b 1> = 2·1 + 3·0 = 2

C 2 = < v, b 2> = 2·0 + 3·1 = 3

v = 2· b 1 + 3· b 2

 







Дата добавления: 2015-09-07; просмотров: 2435. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия