Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лучевой и волновой эллипсоиды Френеля





Как было показано ранее - см. выражение (2.6), - в системе главных диэлектрических осей объемная плотность электрической энергии поля определяется двумя аналогичными выражениями:

.

Введя новые переменные ; ; и ; ; , где , получим уравнения двух эллипсоидов

, (2.21)

, (2.22)

       
   
 

из которых первый называется лучевым (рис. 11), а второй - волно­вым (рис. 12) эллипсоидами Френеля. Координаты точек на поверх­но­стях эллипсоидов представляют собой с точностью до постоянной зна­чения компонент векторов и соответственно. Отметим, что полуоси лучевого эллипсоида пропорциональны соответствующим главным ско­ростям распространения , , а полуоси волнового эллипсоида об­ратно пропорциональны им.

Рассмотрим решение волнового уравнения Френеля для волны, распространяющейся вдоль одной из координатных осей, например вдоль оси . В этом случае , . Из (2.17) получим

.

Решения этого уравнения очевидны: , . С другой сто­роны, из рассмотрения частных случаев мы ужe знаем, что с главной ско­ростью распространяется волна, поляризованная вдоль оси , со ско­ростью - волна, поляризованная вдоль оси . Из рис. 12 следует, что указанные направления колебаний векторов и совпадают с полу­осями эллипса центрального сечения волнового эллипсоида Френеля плоскостью, ортогональной , т.е. плоскостью . Аналогично для волны, распространяющейся вдоль оси из (2.20) для групповой скоро­сти получим

,

т.е. . Направления колебаний векторов и совпадают с осями и ,т.е. с полуосями эллипса центрального сечения лучевого эллипсоида (см. рис. 11). Рассмотренный алгоритм определе­ния направлений колебания векторов , и , можно распростра­нить и на общий случай положения векторов и в пространстве. Этот алгоритм формулируется следующим образом: для того чтобы опреде­лить направление колебаний векторов при заданном зна­чении вектора распространения луча (волнового фронта) в кри­сталле, необходимо построить центральное сечение лучевого (волно­вого) эллипсоида Френеля плоскостью, ортогональной вектору . Тогда направления колебаний векторов будут совпадать с полу­осями полученного эллипса сечения. Лучевые (фазовые) скорости соот­ветствующих волн будут прямо (обратно) пропорциональны длинам по­луосей.

Указанный алгоритм нагляден (см. рис. 11 и 12) и очень удобен для анализа особенностей распространения световых волн в кристаллах. Подробное доказательство его приведено в работе [2]. Как известно из аналитической геометрии, в любом эллипсоиде общего вида могут быть найдены не более двух центральных сечений, представляющих собой ок­ружность; это означает, что в любом кристалле существуют не более двух направлений , ортогональных соответствующим сечениям, в ко­торых кристалл проявляет себя как изотропная среда. Такие направления называют лучевыми (волновыми) оптическими осями, а соответствующий кристалл - двухосным. При равенстве двух из трех значений главных ди­электрических проницаемостей эллипсоиды Френеля являются эллип­соидами вращения. В этом случае оптические оси вырождаются в одну оптическую ось - ось вращения, а кристалл называется одноосным.







Дата добавления: 2015-09-07; просмотров: 1338. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия