ЭПОКСИДИРОВАНИЕ АЛЛИЛХЛОРИДА ПЕРОКСИДОМ ВОДОРОДА В ПРИСУТСТВИИ ПЕРОКСОГЕТЕРОПОЛИСОЕДИНЕНИЙ W(VI) И P(V) В УСЛОВИЯХ МФК
Берлина О.В.,1 Метелева Г.П.2 1 Тюменский государственный архитектурно-строительный университет, Тюмень, Россия. Молодой учёный. berlinao@rambler.ru 2 Тюменский государственный университет, Тюмень, Россия. Молодой учёный. Научный руководитель: Паничева Л.П.
Химия эпоксидных соединений является перспективным направлением органического и нефтехимического синтеза. Обладая высокой реакционной способностью, эпоксиды широко используются при синтезе различного типа ПАВ, пластификаторов, алкидных смол, присадок к маслам, антифризов и т.д. В частности, эпихлоргидрин являясь полупродуктом в получении производных глицерина и эпигидринового синтеза, также используется и в производстве эпоксидных смол. Дегидрохлорирование эпихлоргидринов под действием оснований является основным методом получения эпоксидов, но он не идеален. Этот метод приводит к образованию эквимольного количества хлорида щелочного металла, и продукт неизбежно содержит органические или неорганические хлориды. В большинстве случаев такие примеси являются нежелательными, поскольку эпоксидные смолы, использующиеся в качестве полупроводников, должны быть абсолютно свободными от хлоридов. Прямое эпоксидирование олефинов является более перспективным, чем двухступенчатый процесс. В данном случае возможно использование различных окислителей, однако пероксид водорода является наиболее экологически чистым реагентом, поскольку конечными стабильными продуктами его превращений являются вода и молекулярный кислород. Постоянно возрастающие требования к качеству и ассортименту эпоксисоединений обуславливают необходимость разработки универсальных методов их получения, к числу которых относится прямое эпоксидирование алкенов пероксидом водорода в условиях межфазного катализа (МФК). В этом случае возможно проведение процесса в двухфазной водно-органической системе с использованием водных растворов пероксида водорода, вольфрамата натрия и фосфорной кислоты. При участии фосфорно-вольфрамовых гетеропероксокомплексов, образующихся in situ, реализуется нерадикальный процесс окисления, что обеспечивает более высокую селективность образования эпоксида. В качестве модельной реакции выбрана реакция эпоксидирования аллилхлорида пероксидом водорода в присутствии вольфрамата натрия и добавок фосфорной кислоты, роль межфазного переносчика (QX) выполняют соли четвертичных аммониевых оснований. Реакционная система является двухфазной, при этом органическую фазу составляют субстрат, растворенный в 1,2-дихлорэтане и межфазный переносчик, а водная фаза содержит пероксид водорода и фосфорно-вольфрамовый катализатор. Реакция эпоксидирования аллилхлорида пероксидом водорода в данной системе протекает по следующей схеме: Согласно литературным данным [1], при взаимодействии вольфрамата натрия и фосфорной кислоты образуется фосфорновольфрамовая кислота H3[PW12O40], которая реагирует с избытком пероксида водорода с образованием пероксосоединений, состав которых зависит от условий их формирования, например, H3[PO4{WO(O2)2}4] (PW4), H3[PW3O4((O2)6)4]. Эти пероксокомплексы считаются активными интермедиатами, участвующими в процессе окисления и могут эффективно переноситься из водной фазы в органическую межфазным переносчиком. По мнению авторов [2], гетерополисоединения W(VI) и Р(V) формируются в водной фазе (in situ) при смешении водного раствора Na2WO4 и H3PO4 в кислой среде, и окисляются пероксидом водорода в пероксогетерополианионы. Затем пероксокомплекс стабилизируется введенной в реакционную среду, солью четвертичного аммониевого основания. Липофильный катион межфазного переносчика, переносит пероксокомплекс в органическую фазу, где и происходит взаимодействие последнего с молекулами субстрата. Далее в водной фазе происходит регенерация катализатора пероксидом водорода и каталитический цикл заканчивается. Таким образом, протекание реакции связано с переносом реагентов через границу раздела фаз, и выход продуктов реакции при этом определяется диффузионными и кинетическими факторами. В связи с этим перемешивание системы осуществлялось магнитной мешалкой в кинетическом режиме. В работе были исследованы кинетические кривые образования продуктов реакции. Оказалось, что процесс образования эпихлоргидрина интенсивно протекает, первые 60-90 минут. Для оценки эффективности каталитической активности системы целесообразно использовать начальные участки кинетических кривых, т.е. до торможения процесса, обусловленного уменьшением концентрации реагентов (Н2О2 и субстрата) и изменением рН водной фазы. Следовательно, об эффективности каталитической системы можно судить по выходу эпоксида за 1 час, более длительное проведение реакции нецелесообразно. Исследование влияния рН водной фазы на активность каталитической системы показало, что при рН < 1,25 каталитическая активность системы уменьшается. Вероятно в этой области рН равновесие образования ионов PW4 (Н3РО4 + 4H2WO6 ↔ [PO4{WO(O2)2}4]3- + 4H2O + 3Н+) при увеличении концентрации Н+ сдвигается влево, либо образуются недиссоциированные молекулы H3[PO4{WO(O2)2}4], которые не могут эффективно переносятся в органическую фазу катионом межфазного переносчика (Q+). Кроме того, в сильно кислых средах при рН ≤ 1 возможно образование перекисной катионной формы W2O62+. Вероятно в этой области рН уменьшает количество пероксовольфрамат-анионов, способных вступать в реакцию конденсации с фосфорной кислотой. В области рН > 2 преимущественно образуются ионы с соотношением Р:W равным 1:3 (PW3), 1:2 (PW2), 1:1 (PW1), которые содержат меньшее количество «активного кислорода», что приводит к падению каталитической активности и уменьшению выхода эпоксида [3].
Литература: [1]. Вольдман Г.М., Зеликман А.Н. Ж. Неорг. Хим. 9, 2498-2502 (1977). [2]. Довганюк Т. В., Беренцвейг В.В., Караханов Э.А., Борисенко А.А. Нефтехимия 5, 602-608 (1990). [3]. Кожевников, И. В. Катализ гетерополисоединениями. – М.: Знание, 1985, 32 с. [4]. Mason D., Magdassi S., Sasson Y. J. Org. Chem. 55, 2714-2717 (1990). [5]. Демлов, Э., Демлов, 3. Межфазный катализ. – М.: Мир, 1987, 485 с. [6]. Паничева Л.П., Метелева Г.П., Берлина О.В., Юффа А.Я. Нефтехимия 3, 199-203 (2006).
|