Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет цепи Маркова для стационарного режима





Для нахождения финальных вероятностей необходимо составить систему алгебраических уравнений, исходя из правила – для стационарного режима суммарный поток, переводящий систему из других состояний в состояние sj, равен суммарному потоку вероятностей событий, выводящих систему из состояния sj

(7.7)

К этим уравнениям надо добавить нормировочное условие , отбросив одно любое из уравнений (7.7). Полученная система уравнений с n неизвестными имеет единственное решение.

 

Пример 7.1. Вычислительная машина находится в одном из следующих состояний: s 1 – исправно работает; s2 – несправна, тестируется; s3 – неисправна, настраивается программное обеспечение; s 4 – находится на профилактике; s 5 – ремонтируется, модернизируется. Размеченный граф состояний показан на Рисунке 7.4. Составить систему уравнений и найти предельные вероятности состояний.

Решение. Рассмотрим состояние s 5. В это состояние направленно две стрелки. Поэтому согласно (7.7) в левой части уравнения для j= 5 будут два слагаемых. Следовательно, в правой части будет одно слагаемое. Таким образом,

Аналогично запишем уравнения для вершин 2, 3, 4:

 

Рисунок 7.4. – Размеченный граф состояний к примеру 7.1

 

В качестве пятого уравнения возьмем условие нормировки

Уравнение для узла s 1 отбрасываем. Его можно затем использовать для контроля полученного решения.

Перепишем систему уравнений в виде

;

В результате решения системы линейных алгебраических уравнений (СЛАУ) методом подстановок получим

p 1=0,597; p 2=0,1; p 3=0,071; p 4=0,066; p 5=0,166.

 

Пример 7.2. В локальной вычислительной сети работают три ЭВМ. Через определенные промежутки времени t все ЭВМ тестируются, в результате чего каждая признается либо исправной, либо требующей ремонта. Вероятность того, что за время t исправная ЭВМ выйдет из строя, равна r, а что неисправная будет отремонтирована, равна q. Процессы выхода ЭВМ из строя и их восстановление протекают независимо друг от друга. Полагая, что r =0,2; q =0,3, найти финальные вероятности.

Решение. Построим граф состояний (Рисунок 7.5), нумеруя их по числу исправных ЭВМ: s 0 – нет ни одной неисправной, s 1 – одна неисправна, s 2 – две неисправны, s 3 – все три неисправны.

Рисунок 7.5. – Граф состояний

 

Для того чтобы система перешла из состояния s 0 в s 1, нужно, чтобы одна из трех ЭВМ за время t вышла из строя.

Эта вероятность определяется согласно закону распределения Бернулли

Аналогично находим:

Для проверки убедимся, что

Для того чтобы система из состояний s 1 перешла в состояние s 0, нужно, чтобы неисправная ЭВМ за время t была отремонтирована (А), а две исправные не вышли из строя (В). Тогда

Аналогично находим

Проверочное условие:

Рассуждая подобным образом, определим оставшиеся вероятности:

Проверочное условие:

Проверочное условие:

Из вычисленных вероятностей составим переходную матрицу при r =0,2; q =0,3

Для определения финальных вероятностей выпишем СЛАУ (7.6):

с исключенным третьим узлом s 3:

После преобразований получим СЛАУ AX=B:

Протокол решения СЛАУ (программа в М-файле MatLab) имеет вид:

Таким образом, искомые финальные вероятности равны:

 







Дата добавления: 2015-10-01; просмотров: 2218. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия