Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энтропия. Неопределенность события определяется вероятностью его появления, неопределенность СВ – числовой характеристикой функции плотности вероятностей





Неопределенность события определяется вероятностью его появления, неопределенность СВ – числовой характеристикой функции плотности вероятностей, например, вторым центральным моментом (или дисперсией). Однако для случайных процессов (объектов) или явлений, состояния которых различаются качественно, а не количественно, использование дисперсии невозможно.

В общем случае мера неопределенности, связанная с распределением вероятности, должна быть некоторой ее числовой характеристикой, не зависящей от того, в какой шкале измеряются реализации случайного процесса или явления. В качестве такой меры К. Шеннон предложил использовать энтропию Н для случайного процесса Х:

(8.1)  

где р 1, р 2,…, рn – вероятности случайных событий а 1, а 2,…, аn, характеризующие возможные состояния случайного процесса α;. При этом

  (8.2)

Из формул (8.1) (8.2) следует, что неопределенность отсутствует только в том случае, когда одно из значений рi равно 1. Максимальная неопределенность достигается при р 1= р 2...= рn = , то есть когда существует равновероятное распределение случайных событий, отражающих состояние случайного процесса (объекта или явления).

Принцип максимума информации (энтропии) был сформулирован Джейнсом (Jenes Principal). Этот принцип имеет фундаментальное значение для различных приложений к системам и процессам в физике, химии и биологии.

Его доказательство в нашем случае сводится к следующему.

Потребуем, чтобы условие

выполнялось при ограничении

Экстремум (8.1) при ограничении (8.2) может быть найден с помощью метода множителей Лагранжа. Суть метода состоит в том, что (8.2) умножается на неизвестный пока постоянный параметр λ, и затем полученное произведение прибавляется к левой части уравнения (8.1)

 

Затем определяется экстремум

Из последнего выражения следует, что рi =const. Тогда из условия определяется вероятность

npi =1,

Из равенства вычисляется множитель Лагранжа:

Для равнозначного распределения вероятностей неопределенность возрастает с увеличением n. Последнее свидетельствует о том, что энтропия (8.1) является как мерой неопределенности, так и мерой разнообразия. Это означает, что чем сложнее случайный процесс, тем большей неопределенностью он обладает, или другими словами, тем менее прогнозируемыми становятся объекты или явления.

В случае, когда α; представляет собой континуум () (например, для случайной величины Х, принимающей бесконечное несчетное множество значений ()), энтропия вычисляется по формуле

(8.3)  

Основание логарифма в формулах (8.1), (8.2) не оказывает качественного влияния на оценку энтропии, а лишь определяет её размерность.

Для непрерывных случайных процессов при теоретическом анализе, включающем интегрирование и дифференцирование математических выражений, наиболее удобно использовать натуральные логарифмы. При этом энтропия определяется в натуральных единицах – нитах (или хартли). В более общем случае информационная энтропия (макроэнтропия) для непрерывных случайных процессов имеет размерность времени (секунда). В термодинамике на молекулярном уровне вводится понятие энергетической энтропии (микроэнтропии), которая определяется количеством тепла. Размерность микроэнтропии – джоуль (Дж).

При анализе цифровых машин и других устройств, работающих в двоичном коде, как правило, используются двоичные логарифмы и соответственно двоичные единицы – биты.

При анализе измерительных устройств, работающих в десятичном коде, удобнее применять десятичные логарифмы и десятичные единицы – диты.

Между этими единицами существуют определенные соотношения: 1 дит=2,3 нит=3,3 бит; 1нит=1,45 бит=0,43 дит; 1 бит=0,69 нит=0,3 дит.

Пример 8.1. Для такого объекта как монета (подбрасывание монеты) характерны два равновероятных случайных состояния (события): выпадение решки или орла. Энтропия этого явления

Пример 8.2. Для бутерброда также возможны два состояния: хлеб и масло. На основании известного в народе «закона» о том, что бутерброд всегда падает маслом вниз,

При n =2 неопределенность исхода в подбрасывании максимальна в случае с монетой; для бутерброда неопределенность отсутствует.

 







Дата добавления: 2015-10-01; просмотров: 866. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия