Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАДАЧА № 1. Даны векторы , , угол между векторами и равен .





 

Даны векторы , , угол между векторами и равен .

Вычислить: 1) длины диагоналей параллелограмма, построенного на векторах и ; 2) острый угол между диагоналями параллелограмма; 3) площадь параллелограмма.

Значения коэффициентов l, m, n, k, f и модули векторов и даны ниже для каждого варианта.

 

Вариант
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
Вариант
               
               
               
               
               
               
               
               
               

 

ЗАДАЧА № 2

Даны координаты вершин пирамиды A1A2A3A4: A1(x1 ; y1 ; z1), A2(x2 ; y2 ; z2), A3(x3 ; y3 ; z3), A4(x4 ; y4 ; z4).

Требуется: 1) в декартовой прямоугольной системе координат построить пирамиду A1A2A3A4; 2) записать векторы , , в ортонормированном базисе и найти модули этих векторов; 3) найти острый угол между векторами и ; 4) найти площадь треугольника A1A2A3; 5) найти объем пирамиды A1A2A3A4.

 

Вариант
  (2; 3; 2) (10; 7; 3) (6; 6; 3) (8; 9; 5)
  (3; 5; 2) (1; 7; 5) (5; 6; 8) (1; 6; 4)
  (6; 1; 4) (3;-3; 8) (5;-5; 8) (8; 3; 3)
  (2; 5; 4) (5; 3; 6) (8; 3; 5) (8; 2; 10)
  (3; 4; 3) (7;-4; 4) (6; 0; 4) (9; 10; 6)
  (1; 2; 3) (3; 4; 6) (-3; 1; 6) (3; 3; 5)
  (3; 5; 1) (0; 1; 5) (1; 0; 5) (7; 9;-1)
  (5;-2; 4) (7; 1; 6) (7; 4; 5) (8; 4; 10)
  (1; 2; 1) (9;-2; 2) (-3; 5; 0) (7; 8;-2)
  (4; 1; 3) (2; 3; 6) (5;-3; 6) (3; 3; 5)
  (3;-1; 2) (7; 2; 6) (9; 0; 6) (5; 1; 3)
  (3; 5; 4) (1; 8; 6) (-1; 2; 6) (9;-1; 1)
  (1; 1; 2) (-3; 9; 3) (-2; 5; 3) (7; 7;-1)
  (1; 4; 3) (-1; 6; 6) (6;-4; 0) (2; 2; 1)
Вариант
  (2; 4; 1) (6; 7; 5) (7; 6; 5) (6; 8; 3)
  (1; 2; 2) (3; 5; 4) (5;-1; 4) (7; 8; 5)
  (2;-2; 1) (10; 2; 2) (6; 1; 2) (8; 4; 4)
  (3; 4;-1) (1; 6; 2) (5; 5; 5) (1; 5; 1)
  (2; 5; 3) (-1; 1; 7) (1;-1; 7) (4; 7; 2)
  (1; 4; 2) (4; 2; 4) (7; 2; 3) (7; 1; 8)
  (3; 1; 4) (7;-7; 5) (6;-3; 5) (9; 7; 7)
  (2; 4; 3) (4; 6; 6) (-2; 3; 6) (4; 5; 5)
  (5;-2;-1) (2;-6; 3) (3;-7; 3) (9; 2;-3)
  (5; 2; 1) (7; 5; 3) (7; 8; 2) (8; 8; 7)
  (2;-1; 7) (10;-5; 8) (-2; 2; 6) (8; 5; 4)
  (4; 7; 8) (2; 9; 11) (5; 3; 11) (3; 9; 10)
  (2; 1; 3) (6; 4; 7) (8; 2; 7) (4; 3; 4)
  (1; 5; 2) (-1; 8; 4) (-3; 2; 4) (7;-1;-1)
  (6; 1; 4) (2; 9; 5) (3; 5; 5) (12; 7; 1)
  (6; 5; 1) (4; 7; 4) (11;-3;-2) (7; 3;-1)

 

ЗАДАЧА № 3

 

Построить кривую, заданную уравнением в полярной системе координат.

Вариант Уравнение кривой Вариант Уравнение кривой  
  r = + 2cos 2j   r = 3 – 3sin 2j  
  r = 3 + sin 2j   r = – 2cos 2j  
  r = – 2cos 3j   r = 3 – sin 2j  
  r = 2 – 2sin 3j   r = + 2cos 3j  
  r = + 2sin 3j   r = 2 + 2sin 3j  
  r = 4 + 2cos 3j   r = – 2sin 3j  
  r = – 2sin 2j   r = 4 – 2cos 3j  
  r = 3 – 3cos 2j   r = + 2sin 2j  
  r = + 2sin 2j   r = 3 + 3cos 2j  
  r = 3 + cos 2j   r = – 2sin 2j  
  r = – 2sin 3j   r = 3 – cos 2j  
Вариант Уравнение кривой   Уравнение кривой
  r = 2 – 2cos 3j   r = + 2sin 3j
  r = + 2cos 3j   r = 2 + 2cos 3j
  r = 4 + 2sin 3j   r = – 2cos 3j
  r = – 2cos 2j   r = 4 – 2sin 3j
           

ЗАДАЧА № 4

Решить графически систему линейных неравенств.

     
     
     
     
     
     
     
     
     
     






Дата добавления: 2015-10-01; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия