Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАДАЧА № 1. Даны векторы , , угол между векторами и равен .





 

Даны векторы , , угол между векторами и равен .

Вычислить: 1) длины диагоналей параллелограмма, построенного на векторах и ; 2) острый угол между диагоналями параллелограмма; 3) площадь параллелограмма.

Значения коэффициентов l, m, n, k, f и модули векторов и даны ниже для каждого варианта.

 

Вариант
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
Вариант
               
               
               
               
               
               
               
               
               

 

ЗАДАЧА № 2

Даны координаты вершин пирамиды A1A2A3A4: A1(x1 ; y1 ; z1), A2(x2 ; y2 ; z2), A3(x3 ; y3 ; z3), A4(x4 ; y4 ; z4).

Требуется: 1) в декартовой прямоугольной системе координат построить пирамиду A1A2A3A4; 2) записать векторы , , в ортонормированном базисе и найти модули этих векторов; 3) найти острый угол между векторами и ; 4) найти площадь треугольника A1A2A3; 5) найти объем пирамиды A1A2A3A4.

 

Вариант
  (2; 3; 2) (10; 7; 3) (6; 6; 3) (8; 9; 5)
  (3; 5; 2) (1; 7; 5) (5; 6; 8) (1; 6; 4)
  (6; 1; 4) (3;-3; 8) (5;-5; 8) (8; 3; 3)
  (2; 5; 4) (5; 3; 6) (8; 3; 5) (8; 2; 10)
  (3; 4; 3) (7;-4; 4) (6; 0; 4) (9; 10; 6)
  (1; 2; 3) (3; 4; 6) (-3; 1; 6) (3; 3; 5)
  (3; 5; 1) (0; 1; 5) (1; 0; 5) (7; 9;-1)
  (5;-2; 4) (7; 1; 6) (7; 4; 5) (8; 4; 10)
  (1; 2; 1) (9;-2; 2) (-3; 5; 0) (7; 8;-2)
  (4; 1; 3) (2; 3; 6) (5;-3; 6) (3; 3; 5)
  (3;-1; 2) (7; 2; 6) (9; 0; 6) (5; 1; 3)
  (3; 5; 4) (1; 8; 6) (-1; 2; 6) (9;-1; 1)
  (1; 1; 2) (-3; 9; 3) (-2; 5; 3) (7; 7;-1)
  (1; 4; 3) (-1; 6; 6) (6;-4; 0) (2; 2; 1)
Вариант
  (2; 4; 1) (6; 7; 5) (7; 6; 5) (6; 8; 3)
  (1; 2; 2) (3; 5; 4) (5;-1; 4) (7; 8; 5)
  (2;-2; 1) (10; 2; 2) (6; 1; 2) (8; 4; 4)
  (3; 4;-1) (1; 6; 2) (5; 5; 5) (1; 5; 1)
  (2; 5; 3) (-1; 1; 7) (1;-1; 7) (4; 7; 2)
  (1; 4; 2) (4; 2; 4) (7; 2; 3) (7; 1; 8)
  (3; 1; 4) (7;-7; 5) (6;-3; 5) (9; 7; 7)
  (2; 4; 3) (4; 6; 6) (-2; 3; 6) (4; 5; 5)
  (5;-2;-1) (2;-6; 3) (3;-7; 3) (9; 2;-3)
  (5; 2; 1) (7; 5; 3) (7; 8; 2) (8; 8; 7)
  (2;-1; 7) (10;-5; 8) (-2; 2; 6) (8; 5; 4)
  (4; 7; 8) (2; 9; 11) (5; 3; 11) (3; 9; 10)
  (2; 1; 3) (6; 4; 7) (8; 2; 7) (4; 3; 4)
  (1; 5; 2) (-1; 8; 4) (-3; 2; 4) (7;-1;-1)
  (6; 1; 4) (2; 9; 5) (3; 5; 5) (12; 7; 1)
  (6; 5; 1) (4; 7; 4) (11;-3;-2) (7; 3;-1)

 

ЗАДАЧА № 3

 

Построить кривую, заданную уравнением в полярной системе координат.

Вариант Уравнение кривой Вариант Уравнение кривой  
  r = + 2cos 2j   r = 3 – 3sin 2j  
  r = 3 + sin 2j   r = – 2cos 2j  
  r = – 2cos 3j   r = 3 – sin 2j  
  r = 2 – 2sin 3j   r = + 2cos 3j  
  r = + 2sin 3j   r = 2 + 2sin 3j  
  r = 4 + 2cos 3j   r = – 2sin 3j  
  r = – 2sin 2j   r = 4 – 2cos 3j  
  r = 3 – 3cos 2j   r = + 2sin 2j  
  r = + 2sin 2j   r = 3 + 3cos 2j  
  r = 3 + cos 2j   r = – 2sin 2j  
  r = – 2sin 3j   r = 3 – cos 2j  
Вариант Уравнение кривой   Уравнение кривой
  r = 2 – 2cos 3j   r = + 2sin 3j
  r = + 2cos 3j   r = 2 + 2cos 3j
  r = 4 + 2sin 3j   r = – 2cos 3j
  r = – 2cos 2j   r = 4 – 2sin 3j
           

ЗАДАЧА № 4

Решить графически систему линейных неравенств.

     
     
     
     
     
     
     
     
     
     






Дата добавления: 2015-10-01; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия