Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы проверки гипотезы о нормальном распределении





Для проверки гипотезы о нормальном распределении генеральной совокупности (случайной величины Х) традиционно используется критерий Пирсона.

Проще всего сравнить экспериментальные интервальные частоты, полученные на основе группировки выборки (разд. 11) и теоретические частоты нормально распределенной случайной величины, полученные для выборки того же объема с теми же самыми интервалами группировки. Эти данные сводятся в таблицу:

 

.....
.....
.....

 

Вычисляется выборочное значение критерия

 

. (15.1)

Правило проверки гипотезы о нормальном распределении генеральной совокупности состоит в следующем. Назначается или выбирается уровень значимости α;. Это величина, связанная с надежностью проверки статистической гипотезы. Можно считать, что меньшее значение α; соответствует большему уровню надежности.

Находят число степеней свободы k. Обычно k = s – 3. Действительно, число интервалов надо уменьшить на 3 связи. Одна из них – условие нормировки – объем выборки. Две другие связи означают, что математическое ожидание и средне квадратическое отклонение (необходимые параметры нормального распределения) оцениваются на основании данных той же выборки. Без знания этих оценок невозможно найти теоретические значения интервальных частот .

На основании значений α; и k по таблице распределения находят значение , где β = 1 – α;. Если

, (15.2)

то гипотеза о нормальном распределении генеральной совокупности принимается на уровне значимости α;. В противном случае гипотеза отвергается.

15.2. Пример решения типового задания по теме «Критерий Пирсона»

Задание № 15. На уровне значимости α; = 0,05 установить по критерию Пирсона случайность или значимость расхождения между экспериментальными и теоретическими частотами нормального распределения.

         
         

 

Решение. Проверим условие нормировки

.

Значит, объем выборки n = 50. Проверим условие нормировки для теоретических интервальных частот:

.

Таким образом, экспериментальная и нормально распределенная выборки имеют одинаковый объем и можно проводить проверку по критерию Пирсона.

Найдем выборочное значение критерия по формуле (15.1):

= 4,77.

 

Определим значения параметров проверки. α; = 0,05, значит

β = 1 – α; = 1 – 0,05 = 0,95.

Число интервалов s = 5. Значит, число степеней свободы

k = s – 3 = 5 – 3 = 2.

По таблице прил. 3 находим значение критерия Пирсона

.

Согласно правилу проверки гипотезы на основании критерия Пирсона (15.2) получаем: 4,77 < 5,99.

Таким образом, правило проверки (15.2) выполняется. Это означает, что расхождения между экспериментальными и теоретическими данными носит случайный характер. Следовательно, на уровне значимости 0,05 можно принять гипотезу о нормальном распределении генеральной совокупности (исследуемой случайной величины Х).

 

15.3. Задания по теме «Критерий Пирсона»

Текст задания. На уровне значимости α; установить по критерию Пирсона случайность или значимость расхождения между экспериментальными и теоретическими частотами нормального распределения.

 

Таблица 15.1

 

Варианты задания

15.1. α; = 0.05 15.2. α; = 0.05
                           
                           
15.3. α; = 0.1 15.4. α; = 0.1
                           
                           

 

Продолжение табл. 15.1

15.5. α; = 0.01 15.6. α; = 0.01
                           
                           
15.7. α; = 0.1 15.8. α; = 0.1
                           
                           
15.9. α; = 0.05 15.10. α; = 0.05
                           
                           

 


 

16. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ 相关分析;







Дата добавления: 2015-10-01; просмотров: 801. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия