Механические колебания. Свободные, затухающие и вынужденные колебания линейного осциллятора.
Движения, обладающие той или иной степенью повторяемости, называются колебаниями. Если колебания повторяются через равные промежутки времени, то они называются периодическими. В зависимости от физической природы колебательного процесса и «механизма» его возбуждения различают механические и электромагнитные колебания. Гармонические – это такие колебания, которые описываются периодическим законом
где Амплитуда А, определяющая размах колебаний, равна абсолютному значению наибольшего отклонения Система, совершающая колебания, называется маятником. Пружинный маятник имеет период Свободными (собственными) называются колебания, которые происходят в отсутствие переменных внешних воздействий на колебательную систему. Они возникают вследствие какого-либо начального отклонения этой системы от состояния ее устойчивого равновесия. Рассмотрим смещение x колеблющегося тела относительно положения равновесия, то есть Первая производная от Уравнения (2) показывают, что скорость, как и смещение, изменяются по гармоническому закону с той же частотой w, но ее фаза отличается от фазы смещения на p/2, то есть когда Ускорение изменяется со временем также по гармоническому закону:
где
Таким образом, при гармоническом колебательном движении ускорение тела прямо пропорционально смещению от положения равновесия и имеет противоположный ему знак. Уравнение (4) можно переписать в виде: Это и есть дифференциальное уравнение гармонических колебаний. Если Реально свободные колебания под действием сил сопротивления всегда затухают. Пусть точка совершает линейное гармоническое колебание в вязкой среде. При малых скоростях: где
Выражение Путем подстановки функции (2) и ее производных по времени в уравнение (1), можно найти значение угловой частоты: Наглядной характеристикой затухания является отношение значений двух амплитуд, соответствующих промежутку времени в один период. Это отношение называют декрементом затухания Колебания системы, которые совершаются за счет работы периодически меняющейся внешней силы, называются вынужденными. Пусть на систему действует внешняя сила, меняющаяся со временем по гармоническому закону:
С учетом введенных в предыдущем случае обозначений получим дифференциальное уравнение вынужденного колебания:
Решение дифференциального уравнения при установившемся движении имеет вид: где А, j – величины, которые требуется определить, w – круговая частота колебаний внешней переменной силы. Подставляя (9) в (8) (без вывода), получаем искомые величины:
При некоторой частоте внешних сил знаменатель в выражении для А будет иметь минимальное значение, а амплитуда вынужденных колебаний – максимальное значение. Эта частота называется резонансной. Для ее нахождения, приравниваем к нулю производную: откуда следует Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте w0, называется резонансом. При коэффициенте затухания b=0, когда отсутствуют силы сопротивления,
|