Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Направленных вдоль одной прямой





 

Пусть точка одновременно участвует в двух гармонических колебаниях одинакового периода, направленных вдоль одной прямой.

Сложение колебаний будем производить методом векторных диаграмм.

Пусть колебания заданы уравнениями.

и

Так как колебания совершаются вдоль одной прямой, то и результирующее колебание будет направлено вдоль этой же прямой. Отложим из точки О вектор под углом j1 к опорной линии и вектор под углом j1. Оба вектора вращаются против часовой стрелки с одинаковой угловой скоростью w0, поэтому угол j2 – j1 между ними всегда постоянен.

Нам известно, что проекция суммарного вектора равна сумме проекций слагаемых на эту же ось. Поэтому результирующее колебание может быть изображено вектором амплитуды , вращающимся вокруг точки О с той же угловой скоростью w0, что и вектора и . Результирующее колебание должно быть гармоническим с частотой w0.

Необходимо найти результирующую амплитуду A. Сложение проводим для момента времени t = 0. Вектора отложим под начальными углами j1 и j2. Из рисунка видно, что величину результирующей амплитуды можно получить следующим образом.

Распишем каждое слагаемое.

 

Учтём.

Перепишем.

Учтём, что косинус отрицательного угла равен косинусу положительного угла, и что j1 < j2. Тогда окончательно запишем.

(1)

Начальная фаза результирующего колебания j0 определится из следующего соотношения.

(2)

Из анализа выражения (1) для амплитуды следует, что амплитуда A результирующего колебания зависит от разности начальных фаз j2 – j1. Так как разность j2 – j1 = const (такие колебания называются когерентными), то по формуле (1) можно получить вполне определённое значение результирующей амплитуды A. Косинус любого угла заключён в пределах от –1 до +1. Следовательно, возможные значения A лежат в следующих пределах.

Модуль берётся потому, что амплитуда не может быть отрицательной.

Рассмотрим для примера несколько случаев.

1. Разность фаз равна нулю или чётному числу p, т.е.

n = 0, ±1, ±2, ±3, ….

Тогда cos(j2 – j1) = 1 и A = A1 + A2.


График зависимости смещения от времени будет иметь вид.

 

2. Разность фаз равна нечётному числу p, т.е.

n = 0, ±1, ±2, ±3, ….

Тогда cos(j2 – j1) = – 1 и A =| A1 – A2| = | A2 – A1|.

Если A1 = A2, то результирующая амплитуда A = 0, т.е. колебаний не будет.


3. Разность фаз колебаний изменяется во времени произвольным образом.

Из уравнения (1) следует, что результирующая амплитуда A ¹ const, а будет изменяться в соответствии с величиной меняющейся разности фаз исходных колебаний.

Поэтому при сложении некогерентных колебаний не имеет смысла говорить о сложении амплитуд. Следовательно, сумма гармонических колебаний одного направления с разными частотами не является гармоническим колебанием.

Но в некоторых случаях наблюдаются вполне определённые закономерности.

 

Биения

 

Особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало различаются по частоте. Результирующее движение при этих условиях можно рассматривать как гармоническое колебание с пульсирующей амплитудой. Такое колебание называется биениями.

Пусть имеются два колебания, различающиеся только частотами:

,

,

где .

Сложив эти колебания и применив теорему сложения косинусов:

,

получим уравнение результирующего колебания:

В итоге получили выражение для почти гармонического колебания с частотой , амплитуда которого изменяется по некоторому периодическому закону.

 

Частоту называют циклической частотой биений.

период биений.

Периодическое изменение амплитуды от максимума до минимума называются биениями. Амплитуда результирующего колебания изменяется с частотой следующим образом.

Явление биения часто наблюдается при звуковых и электрических колебаниях.

 
 

В общем случае колебания вида называются модулированными. Различают частные случаи: амплитудная модуляция (амплитуда колебания зависит от времени по определённому закону); модуляция по фазе или частоте (фаза колебаний зависит от времени). Биения – это простейший вид модулированных колебаний.

Важной задачей теории колебаний является гармонический анализ, т.е. представление сложных модулированных колебаний в виде суммы (в виде ряда) простых гармонических колебаний. Используются ряды Фурье. Например.

 







Дата добавления: 2015-10-02; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия