Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математический маятник





Математический маятник – это идеализированная система, состоящая из материальной точки массой , подвешенной на невесомой нерастяжимой нити, и совершающая колебания под действием силы тяжести.

Изобразим такой маятник в момент, когда нить подвеса отклонена влево от вертикали на угол , маятник движется влево. Введем следующие обозначения: – сила тяжести, – сила натяжения нити, – радиус-вектор.

Момента силы тяжести относительно оси. Вектор угловой скорости направлен вдоль оси вращения так, что образует правый винт с направлением вращения (движения) маятника. Угловое ускорение совпадает по направлению с вектором , если угловая скорость увеличивается, и направлено в противоположную сторону, если скорость уменьшается. Пренебрежем силами трения и сопротивления среды. Для получения уравнения движения применим основной закон вращательного движения твердого тела.

В этом уравнении – момент инерции точки относительно оси, проходящей через точку подвеса. Момент силы тяжести стремится возвратить маятник в положение равновесия; момент силы натяжения нити относительно той же оси равен нулю.

Величины, входящие в уравнение запишем следующим образом:

, ,

Отсюда основной закон вращательного движения в проекции на ось вращения может быть записан в следующем виде.

Знак "минус" означает, что действие силы тяжести направлено против движения маятника. Окончательно получим.

где

В итоге получили обыкновенное нелинейное дифференциальное уравнение, описывающее движение математического маятника при любой величине угла отклонения от вертикали. Если рассматривать малые отклонения маятника от положения равновесия , то из выражения следует дифференциальное уравнение гармонических колебаний (при ):

при этом имеет смысл собственной круговой частоты малых колебаний математического маятника. Период этих колебаний определяется по формуле . Решением этого уравнения является известная формула гармонических колебаний

 







Дата добавления: 2015-10-02; просмотров: 1480. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия