Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математический маятник





Математический маятник – это идеализированная система, состоящая из материальной точки массой , подвешенной на невесомой нерастяжимой нити, и совершающая колебания под действием силы тяжести.

Изобразим такой маятник в момент, когда нить подвеса отклонена влево от вертикали на угол , маятник движется влево. Введем следующие обозначения: – сила тяжести, – сила натяжения нити, – радиус-вектор.

Момента силы тяжести относительно оси. Вектор угловой скорости направлен вдоль оси вращения так, что образует правый винт с направлением вращения (движения) маятника. Угловое ускорение совпадает по направлению с вектором , если угловая скорость увеличивается, и направлено в противоположную сторону, если скорость уменьшается. Пренебрежем силами трения и сопротивления среды. Для получения уравнения движения применим основной закон вращательного движения твердого тела.

В этом уравнении – момент инерции точки относительно оси, проходящей через точку подвеса. Момент силы тяжести стремится возвратить маятник в положение равновесия; момент силы натяжения нити относительно той же оси равен нулю.

Величины, входящие в уравнение запишем следующим образом:

, ,

Отсюда основной закон вращательного движения в проекции на ось вращения может быть записан в следующем виде.

Знак "минус" означает, что действие силы тяжести направлено против движения маятника. Окончательно получим.

где

В итоге получили обыкновенное нелинейное дифференциальное уравнение, описывающее движение математического маятника при любой величине угла отклонения от вертикали. Если рассматривать малые отклонения маятника от положения равновесия , то из выражения следует дифференциальное уравнение гармонических колебаний (при ):

при этом имеет смысл собственной круговой частоты малых колебаний математического маятника. Период этих колебаний определяется по формуле . Решением этого уравнения является известная формула гармонических колебаний

 







Дата добавления: 2015-10-02; просмотров: 1480. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия