Свободные затухающие механические колебания
В предыдущих разделах мы рассмотрели идеальные колебательные системы, т.е. такие системы, в которых первоначально запасенная энергия не переходит в другие виды энергий, например, в тепловую энергию. Говорят, что в системе не происходит диссипация энергии. Однако в реальных системах всегда присутствуют процессы, приводящие к диссипации энергии (к потерям колебательной энергии). Это могут быть, например, силы трения. Эти процессы вызывают изменение амплитуды или затухание свободных колебаний. Рассмотрим законы изменения параметров свободных затухающих колебаний. Свободные затухающие колебания – это такие свободные колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается. Закон затухания колебаний определяется свойствами колебательных систем. Чаще всего для простоты рассматривают линейные системы, т.е. такие идеализированные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. В качестве линейной системы, например, можно рассматривать пружинный маятник при малых растяжениях пружины, когда справедлив закон Гука Fx = k×x. Линейные системы описываются линейными дифференциальными системами уравнений. Во многих случаях в первом приближении можно считать, что при небольших скоростях, силы, вызывающие затухание колебаний, пропорциональны величине скорости. Тогда силу сопротивления (или силу трения) можно записать в следующем виде. где r – коэффициент сопротивления, а v – скорость движения. Запишем второй закон Ньютона для затухающих прямолинейных колебаний вдоль оси x. Первый член в правой части это возвращающая сила, а второй – сила сопротивления. Распишем последнее выражение. Перепишем по другому. Введём обозначения
В этом уравнении В случае малых затуханий (
где
На рисунке показан вид колебаний, которые описываются уравнением затухающих колебаний (сплошная линия). На этом же рисунке показана зависимость амплитуды колебаний от времени (штриховая линия). Промежуток времени Колебание Найдём частоту затухающих колебаний w. Здесь эта частота уже не равна w0. (w ¹ w0). Подставим (2) в (1). Но сначала отдельно найдём производные смещения по времени.
w0 – круговая частота собственных колебаний (колебаний без затухания). w – круговая частота свободных затухающих колебаний. Из последнего выражения ясно, почему решение уравнения (1) будет только при b £ w0. Тогда период Для колебаний под действием различных квазиупругих сил значения w0, w, b будут различными. Например, для колебаний под действием упругой силы. При большом коэффициенте затухания происходит не только быстрое уменьшение амплитуды, но и заметное увеличение периода колебаний. Когда сопротивление становится равным критическому, т.е. b = w0, то w = 0 (обращается в нуль). Колебания прекращаются – апериодический процесс. Отличия в следующем. При колебаниях тело, возвращающееся в положение равновесия, имеет какой-то запас кинетической энергии. В случае апериодического движения энергия тела при возвращении в положение равновесия оказывается израсходованной на преодоление сил трения.
|