Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свободные затухающие электрические колебания в контуре





 

Реальный контур обладает активным сопротивлением. Энергия, запасенная в контуре, постепенно расходуется на этом сопротивлении на нагревание, вследствие чего свободные колебания затухают. Учтем фактор затухания в выражении для закона Ома или по второму правилу Кирхгофа.

.

Разделим это уравнение на и заменим ток на заряд . В итоге получим:

Введем обозначение и, учитывая, что , получим окончательно.

Это уравнение, как и ожидалось, совпадает с дифференциальным уравнением затухающих механических колебаний. При условии, что , т.е. при решение уравнения затухающих колебаний имеет вид

, (1)

где . Если в это выражение подставить соответствующие выражения для и , получим следующее соотношение для частоты затухающих колебаний:

При получится выражение для собственной частоты незатухающих свободных колебаний в контуре.

Из уравнения для затухающих колебаний легко получить формулу для напряжения на конденсаторе, разделив уравнение (1) на емкость , и выражение для тока в контуре после дифференцирования этого же уравнения. Отпуская эти и ряд других несложных преобразований, запишем лишь один из результатов анализа формул, которые после этих преобразований могут быть получены. Этот результат касается разности фаз между током и падением напряжения на конденсаторе колебательного контура: при наличии активного сопротивления в контуре сила тока опережает по фазе напряжение на конденсаторе на угол , больший, чем ().

График изменения заряда со временем изображен на рисунке и подобен соответствующему графику для механических колебаний.

Как и в случае механических колебаний, затухание электрических колебаний характеризуется логарифмическим декрементом затухания:

 

 

.

Логарифмический декремент затухания обратен по величине числу колебаний , совершаемых за время, в течение которого амплитуда затухающего колебания уменьшится в раз (за время релаксации). Если в выражение для логарифмического декремента затухания подставить значения для и , получим следующую форму записи:

Получили, что логарифмический декремент затухания определяется параметрами контура, т.е. является его характеристикой.

Добротность контура – это величина, обратно пропорциональная логарифмическому декременту затухания.

Добротность контура пропорциональна числу колебаний , совершаемых за время релаксации. Добротность тем выше, чем большее число колебаний успевает совершиться прежде, чем амплитуда уменьшится в раз.

Добротность контура определяется ещё и по-другому.

Это отношение энергии в контуре в данный момент времени к убыли энергии за один период, следующий за этим моментом.

При , т.е. при происходит апериодический разряд.

Конденсатор просто разряжается на сопротивление, и колебания не происходят.

Сопротивление контура, при котором колебательный процесс переходит в апериодический, называется критическим сопротивлением.

 







Дата добавления: 2015-10-02; просмотров: 781. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия