Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свободные затухающие электрические колебания в контуре





 

Реальный контур обладает активным сопротивлением. Энергия, запасенная в контуре, постепенно расходуется на этом сопротивлении на нагревание, вследствие чего свободные колебания затухают. Учтем фактор затухания в выражении для закона Ома или по второму правилу Кирхгофа.

.

Разделим это уравнение на и заменим ток на заряд . В итоге получим:

Введем обозначение и, учитывая, что , получим окончательно.

Это уравнение, как и ожидалось, совпадает с дифференциальным уравнением затухающих механических колебаний. При условии, что , т.е. при решение уравнения затухающих колебаний имеет вид

, (1)

где . Если в это выражение подставить соответствующие выражения для и , получим следующее соотношение для частоты затухающих колебаний:

При получится выражение для собственной частоты незатухающих свободных колебаний в контуре.

Из уравнения для затухающих колебаний легко получить формулу для напряжения на конденсаторе, разделив уравнение (1) на емкость , и выражение для тока в контуре после дифференцирования этого же уравнения. Отпуская эти и ряд других несложных преобразований, запишем лишь один из результатов анализа формул, которые после этих преобразований могут быть получены. Этот результат касается разности фаз между током и падением напряжения на конденсаторе колебательного контура: при наличии активного сопротивления в контуре сила тока опережает по фазе напряжение на конденсаторе на угол , больший, чем ().

График изменения заряда со временем изображен на рисунке и подобен соответствующему графику для механических колебаний.

Как и в случае механических колебаний, затухание электрических колебаний характеризуется логарифмическим декрементом затухания:

 

 

.

Логарифмический декремент затухания обратен по величине числу колебаний , совершаемых за время, в течение которого амплитуда затухающего колебания уменьшится в раз (за время релаксации). Если в выражение для логарифмического декремента затухания подставить значения для и , получим следующую форму записи:

Получили, что логарифмический декремент затухания определяется параметрами контура, т.е. является его характеристикой.

Добротность контура – это величина, обратно пропорциональная логарифмическому декременту затухания.

Добротность контура пропорциональна числу колебаний , совершаемых за время релаксации. Добротность тем выше, чем большее число колебаний успевает совершиться прежде, чем амплитуда уменьшится в раз.

Добротность контура определяется ещё и по-другому.

Это отношение энергии в контуре в данный момент времени к убыли энергии за один период, следующий за этим моментом.

При , т.е. при происходит апериодический разряд.

Конденсатор просто разряжается на сопротивление, и колебания не происходят.

Сопротивление контура, при котором колебательный процесс переходит в апериодический, называется критическим сопротивлением.

 







Дата добавления: 2015-10-02; просмотров: 781. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия