Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.





Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты, происходящих во взаимно перпендикулярных направлениях вдоль осей и . Такой случай возникает, например, если на управляющие вертикальные и горизонтальные пластины осциллографа подать периодические гармонические сигналы. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю (Dj = j2 – j1 = j). Тогда уравнения колебаний будут иметь вид:

;

;

Для нахождения уравнения траектории результирующего колебания исключим из уравнений параметр :

;

Преобразуем второе уравнение и распишем его через косинус суммы.

Перепишем последнее уравнение следующим образом и возведём левую и правую части в квадрат.

Перепишем.

Преобразуем.

И окончательно запишем.

(1)

Или в общем виде.

Это есть уравнение эллипса, оси которого ориентированы произвольно относительно осей x и y.

Исследуем уравнение (1) и выясним форму кривых, определяемых этим уравнением.

а) Пусть разность фаз , Из (1) при этом следует

При четных получается

, или ,

При нечетных получается .

Первому из полученных уравнений соответствует прямая 1 – 2 на рисунке, второму уравнению – прямая 3 – 4.

Следовательно, в результате сложения двух взаимно перпендикулярных колебаний с одинаковыми начальными фазами и частотами колебания будут происходить вдоль прямой, проходящей через начало координат.

Амплитуда результирующего колебания в обоих случаях будет равна.

 

б) Пусть разность фаз будет любой, кроме уже рассмотренных значений. Тогда уравнением траектории будет выражение (1). Это уравнение эллипса. Таким образом, точка, участвующая в двух взаимно перпендикулярных колебаниях с одинаковой частотой, движется по эллиптической траектории, соответствующим образом ориентированной по отношению к выбранной системе координат. Параметры траектории определяются соотношением амплитуд и разностью фаз исходных колебаний. Пример: если , , то уравнение (1) преобразуется к виду

.

Это так называемое каноническое уравнение эллипса с полуосями A и B. На рисунке стрелками показано направление движения точки вдоль траектории при и . Полуоси эллипса равны соответствующим амплитудам колебаний. Это случай эллиптически поляризованных колебаний.

При эллипс вырождается в окружность. Это циркулярно поляризованные колебания.

Все остальные разности фаз дают эллипсы с различным углом наклона относительно осей координат.

Если частоты взаимно перпендикулярных колебаний неодинаковы, то траектория результирующего движения может иметь вид сложных кривых, называемых фигурами Лиссажу. Пример: Пусть отношение частот взаимно перпендикулярных колебаний равно 1:2 и разность фаз . Уравнения колебаний имеют вид:

,

Результирующее колебание показано на рисунке. Траектория вырождается в незамкнутую кривую, по которой точка движется туда и обратно. Это одна из простейших фигур Лиссажу. Возможно, на лабораторном практикуме Вы будете выполнять эту лабораторную работу.

 







Дата добавления: 2015-10-02; просмотров: 1928. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия