Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.





Рассмотрим результат сложения двух гармонических колебаний одинаковой частоты, происходящих во взаимно перпендикулярных направлениях вдоль осей и . Такой случай возникает, например, если на управляющие вертикальные и горизонтальные пластины осциллографа подать периодические гармонические сигналы. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю (Dj = j2 – j1 = j). Тогда уравнения колебаний будут иметь вид:

;

;

Для нахождения уравнения траектории результирующего колебания исключим из уравнений параметр :

;

Преобразуем второе уравнение и распишем его через косинус суммы.

Перепишем последнее уравнение следующим образом и возведём левую и правую части в квадрат.

Перепишем.

Преобразуем.

И окончательно запишем.

(1)

Или в общем виде.

Это есть уравнение эллипса, оси которого ориентированы произвольно относительно осей x и y.

Исследуем уравнение (1) и выясним форму кривых, определяемых этим уравнением.

а) Пусть разность фаз , Из (1) при этом следует

При четных получается

, или ,

При нечетных получается .

Первому из полученных уравнений соответствует прямая 1 – 2 на рисунке, второму уравнению – прямая 3 – 4.

Следовательно, в результате сложения двух взаимно перпендикулярных колебаний с одинаковыми начальными фазами и частотами колебания будут происходить вдоль прямой, проходящей через начало координат.

Амплитуда результирующего колебания в обоих случаях будет равна.

 

б) Пусть разность фаз будет любой, кроме уже рассмотренных значений. Тогда уравнением траектории будет выражение (1). Это уравнение эллипса. Таким образом, точка, участвующая в двух взаимно перпендикулярных колебаниях с одинаковой частотой, движется по эллиптической траектории, соответствующим образом ориентированной по отношению к выбранной системе координат. Параметры траектории определяются соотношением амплитуд и разностью фаз исходных колебаний. Пример: если , , то уравнение (1) преобразуется к виду

.

Это так называемое каноническое уравнение эллипса с полуосями A и B. На рисунке стрелками показано направление движения точки вдоль траектории при и . Полуоси эллипса равны соответствующим амплитудам колебаний. Это случай эллиптически поляризованных колебаний.

При эллипс вырождается в окружность. Это циркулярно поляризованные колебания.

Все остальные разности фаз дают эллипсы с различным углом наклона относительно осей координат.

Если частоты взаимно перпендикулярных колебаний неодинаковы, то траектория результирующего движения может иметь вид сложных кривых, называемых фигурами Лиссажу. Пример: Пусть отношение частот взаимно перпендикулярных колебаний равно 1:2 и разность фаз . Уравнения колебаний имеют вид:

,

Результирующее колебание показано на рисунке. Траектория вырождается в незамкнутую кривую, по которой точка движется туда и обратно. Это одна из простейших фигур Лиссажу. Возможно, на лабораторном практикуме Вы будете выполнять эту лабораторную работу.

 







Дата добавления: 2015-10-02; просмотров: 1928. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия