Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вынужденные механические колебания





Большой интерес для техники представляет возможность поддерживать колебания незатухающими. Для этого необходимо восполнять потери реальной колебательной системы. Восполнение потерь возможно с помощью какого–либо периодически действующего фактора. Пусть таким фактором в механической колебательной системе будет действие вынуждающей силы, изменяющейся по гармоническому закону:

,

где и соответственно амплитуда, и собственная частота вынуждающей силы.

Рассмотрим пружинный маятник. Уравнение движения такого маятника получено нами в виде:

Приблизим идеализированную колебательную систему к реальной, введя фактор диссипации энергии (потери энергии), например, силы трения. Сила трения пропорциональна скорости, следовательно, выражение для силы трения можно записать.

,

где – коэффициент сопротивления.

Учтем наличие сил трения в законе движения маятника.

.

Это уравнение свободных затухающих колебаний пружинного маятника. Пусть потери, возникающие в колебательной системе за счет действия сил трения, компенсируются действием вынуждающей силы . Тогда уравнение движение маятника можно представить в виде

.

Преобразуем это выражение. Разделим обе части на и введем обозначения

, – коэффициент затухания пружинного маятника.

В итоге получим:

,

или , (1)

или .

Это линейное неоднородное дифференциальное уравнение вынужденных колебаний пружинного маятника. Графически вынужденные колебания изображены на рисунке.

В соответствии с правилами математики решение неоднородного дифференциального уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения. Общее решение имеет следующий вид

 

 

и соответствует свободным затухающим колебаниям. Это решение играет заметную роль только в начальной стадии процесса, при установлении колебаний. С течением времени из-за множителя роль этого слагаемого в общем решении неоднородного дифференциального уравнения уменьшается. По прошествии достаточно большого для установления колебаний промежутка времени им можно пренебречь, сохраняя в решении лишь частное решение неоднородного уравнения. Частное решение, отвечающее установившимся вынужденным колебаниям маятника, может быть получено различными способами и имеет вид:

. (2)

Наша задача найти амплитуду вынужденных колебаний A и начальную фазу j вынужденных колебаний.

Обратим внимание на то, что скорость опережает смещение на p/2, а ускорение на эту же величину опережает скорость и

Распишем смещение, скорость и ускорение через косинус.

Выражение (2) примет вид.

(2')

(3)

(4)

Подставим (2'), (3) и (4) в (1).

Разделим всё на амплитуду A.

Каждое слагаемое можно представить в виде соответствующего вращающегося вектора амплитуды.

– амплитуда ускорения.

– амплитуда скорости.

– амплитуда смещения.

 
 

Решать будем с помощью метода векторных диаграмм.

 

 

 

 

Из рисунка видно.

Тогда получим.

С учётом (5) окончательно имеем.

. (6)

При постоянных значениях F0, m и b – амплитуда зависит только от соотношения круговых частот: вынуждающей силы (w) и свободных незатухающих колебаний системы (w0). Начальная фаза вынужденных колебаний определится следующим образом.

(7)

 

Таким образом, установившиеся вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте вынуждающей силы. Для рассматриваемой колебательной системы с заданными параметрами ( и ) амплитуда вынужденных колебаний зависит от величины и частоты вынуждающей силы. Вынужденные колебания отстают по фазе от вынуждающей силы, причем величина отставания также зависит от частоты вынуждающей силы.

Проанализируем выражение (6).

1. w = 0 (частота вынуждающей силы равна нулю).

– это статическая амплитуда, колебания не совершаются.

2. Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается наиболее отзывчивой на действие вынуждающей силы именно на этой частоте. Это явление называется резонансом, а соответствующая частота – резонансной частотой. Для определения резонансной частоты нужно найти минимум выражения, стоящего в знаменателе соотношения для амплитуды вынужденных колебаний. Продифференцируем знаменатель в (6) и приравнять его к нулю, получим выражение для резонансной частоты. Имеем.

.

Следовательно, равно нулю выражение в скобках.

Отсюда получим.

. (8)

Если подставить полученную формулу в выражение для амплитуды вынужденных колебаний в установившемся состоянии, получим выражение для амплитуды при резонансе:

.

Из этого выражения следует, что при отсутствии сопротивления среды () амплитуда при резонансе обращалась бы в бесконечность. Кроме того, при этом условии резонансная частота совпадает с собственной частотой колебаний системы .

b1 < b2 < b 3.

Для консервативной системы, т.е. при b = 0 wрез = w0.

Для диссипативной системы – wрез несколько меньше собственной круговой частоты (см. выражение 8). С увеличением коэффициента затухания b явление резонанса проявляется всё слабее и исчезает при

.

Явление резонанса часто оказывается полезным, особенно в акустике, радиотехнике. Вместе с тем, с этим явлением иногда приходится бороться, или, во всяком случае, учитывать. Например, собственная частота вибраций корпуса корабля или крыльев самолета должны сильно отличаться от частоты колебаний, которые могут возбуждаться вращением гребного винта или пропеллера. В противном случае могут возникнуть опасные вибрации, которые могут привести к разрушению.

 







Дата добавления: 2015-10-02; просмотров: 990. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия