Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. где – непрерывная функция





Пусть дано уравнение

, (3.1)

где – непрерывная функция. Требуется вычислить действительный корень уравнения, находящийся на отрезке . Приводим заданное уравнение к эквивалентному виду

, (3.2)

где – некоторая непрерывная на отрезке функция.

Выбираем произвольное и подставляем его в правую часть равенства (3.2):

.

Аналогично получаем итерационную последовательность:

;

;

…………..

.

Доказано, что если итерационная последовательность , , ,…, ,… сходится, то её пределом является корень уравнения (3.2), а значит, и корень уравнения (3.1), так как уравнения (3.1) и (3.2) равносильны.

Для сходимости итерационного процесса достаточно исходное уравнение привести к виду так, чтобы выполнялось условие

, (3.3)

где . При этом итерационная последовательность сходится независимо от выбора .

Итерации имеют геометрическую интерпретацию. Решение уравнения (3.2) является абсциссой точки пересечения прямой y = x и кривой y = φ(x). Геометрически видно, что если в окрестности решения выполняются неравенства 0 < φ’(x) ≤ М < 1, то последовательность {xK} монотонно сходится к , причем с той стороны, с которой расположено начальное приближение (рис. 3.1).

 

Рис. 3.1. Приближение к корню с одной стороны

 

В случае −1 < −M ≤ φ’(x) < 0 последовательные приближения расположены поочередно с разных сторон от решения (рис. 3.2).

 

Рис. 3.2. Приближение к корню с разных сторон

 

Уравнение можно преобразовать к виду разными способами, лишь бы функция удовлетворяла условию (3.3). Например, уравнение заменяем равносильным . В этом случае . Параметр выбираем так, чтобы ½ при .

Пример 1. Привести уравнение к виду, пригодному для применения метода итераций. Единственный действительный корень заданного уравнения находится на отрезке , так как , .

Приводим исходное уравнение к виду .В этом случае . Тогда , при .

Таким образом, достаточное условие сходимости итерационного процесса выполняется. Метод итераций применим для решения полученного уравнения. Выбираем произвольное , например, , и начинаем процесс метода итераций.

Пример 2. Привести уравнение к виду, пригодному для применения метода итераций.

Единственный корень заданного уравнения находится на отрезке . Рассмотренный в примере 1 способ в данном случае неприменим, так как при этом не удовлетворяется достаточное условие сходимости итерационного процесса. Заменяем исходное уравнение равносильным:

.

В этом случае

, .

Параметр находим из условия ê при , т.е. или при . Отсюда . Полагаем, например, . Исходное уравнение преобразуем к виду

,

причем при .

Выбираем произвольное . Пусть , вычисляем . Подставляя в правую часть равенства, получаем и т.д. Вычисления производим до тех пор, пока выполнится неравенство .

Скорость сходимости итерационного процесса определяется неравенством

,

где – точное решение уравнения.

Оценка погрешности метода простой итерации записывается в виде

,

где – заданная точность решения. В частности, при и величина будет приближенным значением корня с точностью до , т.е. .







Дата добавления: 2015-10-02; просмотров: 438. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия