Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Факторный анализ





В описанном выше методе главных компонент под критерием автоинформативности пространства признаков подразумевается, что ценную для диагностики информацию можно отразить в линейной модели, которая соответствует новой координатной оси в данном пространстве с максимальной дисперсией распределения проекций исследуемых объектов. Такой подход является продуктивным, когда явное большинство заданий «чернового» варианта теста согласованно «работает» на проявление тестируемого свойства и подавляет влияние иррелевантных факторов на распределение объектов. Также положительный результат будет получен при сравнительно небольшом объеме группы связанных информативных признаков, но при несогласованном взаимодействии посторонних факторов, под влиянием которых не нарушается однородность эллипсоида рассеивания, а лишь уменьшается вытянутость распределения объектов вдоль направления диагностируемой тенденции. В отличие от метода главных компонент факторный анализ основан не на дисперсионном критерии автоинформативности системы признаков, а ориентирован на объяснение имеющихся между признаками корреляций. Поэтому факторный анализ применяется в более сложных случаях совместного проявления на структуре экспериментальных данных тестируемого и иррелевантного свойств объектов, сопоставимых по степени внутренней согласованности, а также для выделения группы диагностических показателей из общего исходного множества признаков.

Основная модель факторного анализа записывается следующей системой равенств /Налимов В. В., 1971/

То есть полагается, что значения каждого признака xi могут быть выражены взвешенной суммой латентных переменных (простых факторов) fi, количество которых меньше числа исходных признаков, и остаточным членом εi с дисперсией σ2i),действующей только на xi, который называют специфическим фактором. Коэффициенты lij называются нагрузкой i-й переменной на j-й фактор или нагрузкой j-го фактора на i-ю переменную. В самой простой модели факторного анализа считается, что факторы fj взаимно независимы и их дисперсии равны единице, а случайные величины εi тоже независимы друг от друга и от какого-либо фактора fj. Максимально возможное количество факторов m при заданном числе признаков р определяется неравенством

(р+m)<(р—m)2,

которое должно выполняться, чтобы задача не вырождалась в тривиальную. Данное неравенство получается на основании подсчета степеней свободы, имеющихся в задаче /Лоули Д. и др., 1967/. Сумму квадратов нагрузок в формуле основной модели факторного анализа называют общностью соответствующего признака xi и чем больше это значение, тем лучше описывается признак xi выделенными факторами fj. Общность есть часть дисперсии признака, которую объясняют факторы. В свою очередь, ε2i показывает, какая часть дисперсии исходного признака остается необъясненной при используемом наборе факторов и данную величину называют специфичностью признака. Таким образом,

Основное соотношение факторного анализа показывает, что коэффициент корреляции любых двух признаков xi и хj можно выразить суммой произведения нагрузок некоррелированных факторов

Задачу факторного анализа нельзя решить однозначно. Равенства основной модели факторного анализа не поддаются непосредственной проверке, так как р исходных признаков задается через (р+m) других переменных — простых и специфических факторов. Поэтому представление корреляционной матрицы факторами, как говорят, ее факторизацию, можно произвести бесконечно большим числом способов. Если удалось произвести факторизацию корреляционной матрицы с помощью некоторой матрицы факторных нагрузок F, то любое линейное ортогональное преобразование F (ортогональное вращение) приведет к такой же факторизации /Налимов В. В., 1971/.

Существующие программы вычисления нагрузок начинают работать с m =1 (однофакторная модель) /Александров В. В. и др., 1990/. Затем проверяется, насколько корреляционная матрица, восстановленная по однофакторной модели в соответствии с основным соотношением факторного анализа, отличается от корреляционной матрицы исходных данных. Если однофакторная модель признается неудовлетворительной, то испытывается модель с m=2 и т. д. до тех пор, пока при некотором m не будет достигнута адекватность или число факторов в модели не превысит максимально допустимое. В последнем случае говорят, что адекватной модели факторного анализа не существует. Если факторная модель существует, то производится вращение полученной системы общих факторов, так как значения факторных нагрузок и нагрузок на факторы есть лишь одно из возможных решений основной модели. Вращение факторов может производиться разными способами. Наиболее часто это вращение осуществляется таким образом, чтобы как можно большее число факторных нагрузок стало нулями и каждый фактор по возможности описывал группу сильно коррелированных признаков. Также можно вращать факторы до тех пор, пока не получатся результаты, поддающиеся содержательной интерпретации. Можно, например, потребовать, чтобы один фактор был нагружен преимущественно признаками одного типа, а другой — признаками другого типа. Или, скажем, можно потребовать, чтобы исчезли какие-то трудно интерпретируемые нагрузки с отрицательными знаками. Нередко исследователи идут дальше и рассматривают прямоугольную систему факторов как частный случай косоугольной, то есть ради содержания жертвуют условием некоррелированности факторов.

В завершение всей процедуры факторного анализа с помощью математических преобразований выражают факторы fj через исходные признаки, то есть получают в явном виде параметры линейной диагностической модели.

Известно большое количество методов факторного анализа (ротаций, максимального правдоподобия и др.). Нередко в одном и том же пакете программ анализа данных реализовано сразу несколько версий таких методов и у исследователей возникает правомерный вопрос о том, какой из них лучше. В этом вопросе наше мнение совпадает с /Александров В. В. и др., 1990/, где утверждается, что практически все методы дают весьма близкие результаты. Там же приводятся слова одного из основоположников современного факторного анализа Г. Хармана: «Ни в одной из работ не было показано, что какой-либо один метод приближается к "истинным" значениям общностей лучше, чем другие методы... Выбор среди группы методов "наилучшего" производится в основном с точки зрения вычислительных удобств, а также склонностей и привязанностей исследователя, которому тот или иной метод казался более адекватным его представлениям об общности» /Харман Г., 1972, с. 97/.

У факторного анализа есть много сторонников и много оппонентов. Но, как справедливо заметил В. В. Налимов: «...У психологов и социологов не оставалось других путей, и они изучили эти два приема (факторный анализ и метод главных компонент, — В. Д.) со всей обстоятельностью» /Налимов В. В., 1971, с. 100/. Для более подробного ознакомления с факторным анализом и его методами может быть рекомендована литература /Лоули Д., и др., 1967; Харман Г., 1972; Айвазян С. А. и др., 1974; Иберла К., 1980/.







Дата добавления: 2015-10-12; просмотров: 778. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия