Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плин ньютонівської рідини по горизонтальній трубці





Формула Пуазейля. Плин в’язких рідин по циліндрич­них трубках має для медицини особливий інтерес. Судинна система може бути представлена сіткою циліндричних тру­бок різного діаметра, лінійна й об’ємна швидкості плину рідини по яких залежить не лише від властивостей рідини, а й від геометричних розмірів судин. Визначимо лінійну й об’ємну швидкості плину для стаціонарного потоку в’язкої рідини крізь судину радіусом R, довжиною L, з перепадом тиску на його кінцях P 1P 2 (мал. 3.16).

Запишемо рівняння руху (3.24) для стаціонарного плину ньютонівської рідини, коли зовнішні сили дорівню­ють нулеві, і сила тяжіння не впливає на плин рідини:

Ñ; P + f тр = 0 або Ñ; P = f тр. (3.25)

Припустимо, що градієнт тиску вздовж трубки струму є постій­на величина: Ñ P = (Р 2Р 1)/ L. Об’ємна сила тертя fтр дорів­нює (3.8):

,

де S 1 = 2 prdx – площа бічної поверхні циліндра, S 2 = pr 2 – площа перерізу циліндра радіуса r. Підставивши ці вирази у рівняння (3.25), отримаємо диференційне рівняння, що ви­зна­чає зміну швидкості рідини вздовж радіуса трубки:

; = – × rdr.

Проінтегруємо це рівняння

υ; = – × r 2 + С,

де сталу інтегрування С знаходимо з умови υ; = 0 на границі судини, тобто при r = R. Це дає С = × R 2. В результаті отримуємо формулу Пуазейля,яка визначає профіль швид­кос­ті ньютонівської рідини в циліндричній трубці

υ; = ×(R 2 r 2). (3.26)

З цієї формули випливає, що профіль швидкостей ньюто­нівсь­кої рідини в циліндричній трубці описується парабо­ліч­­ним законом (мал. 3.17а).

Формула Пуазейля дозволяє визначити об’ємну швид­кість плину ньютонівської рідини. Виділимо у перерізі труб­ки шар рідини товщиною dr і площею dS = 2 prdr (мал. 3.17б). Об’єм рідини, що протікає крізь цю площу за одиницю часу, дорівнює

dQ = υ;(r) dS = υ;(r)×2 prdr.

Мал. 3.17. Характеристики плину ньюто­нівсь­кої рідини по циліндричній трубці: а) профіль швидкостей; б) переріз трубки струму.

Підставивши в цю формулу вираз (3.26) для швидкості і інтегруючи отримане рівняння, дістанемо формулу, що доз­во­ляє визначити об’ємну швидкість рідини:

(3.27)

Помноживши об’ємну швидкість рідини на час плину, отрима­ємо формулу для визначення об’єму рідини V, що протікає через переріз судини за час t:

(3.28)

З формул (3.27) та (3.28), які звуться формулами Гагена–Пуазейля, випливає, що кількість рідини, яка протікає крізь судину, найбільш суттєво залежить від його радіуса і зменшу­ється із зростанням в’язкості рідини.

Формула (3.27), що зв’язує між собою об’ємну швид­кість ріди­ни і різницю тисків на кінцях судини, має вигляд, аналогічний закону Ома:

Q = (P 1 P 2)/ W, (3.29)

тому величину W = 8 hL /(pR 4) називають гідравлічним опо­ром.

 
 

Графічні зображення зв’язку Q –D P називають діаграма­ми “ витра­та–тиск ”.Їх вигляд для ньютонівської рідини і рідини, в’язкість якої залежить від градієнта швидкості (на­при­клад, для крові), подані на мал. 3.18.

Мал. 3.18. Діаграми “витрата–тиск” для ньютонівської (1) та неньютонівської (2) рідин.







Дата добавления: 2015-10-12; просмотров: 2091. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия