Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерії механічної подібності рідин, що рухаються





Незважаючи на різноманітність руху рідин у природі, можна поставити питання: яким умовам повинні відповідати параметри потоку і параметри рідин (густина, в’язкість тощо), щоб рухи рідин були механічно подібні? Якщо подібність має місце, то, знаючи картину плину рідини в одній системі, можна передбачити і харак­тер плину рідини в іншій, геометрично подібній системі. Це має важливе значення не лише у техніці (випробування моделей літаків, кораблів тощо), а й в експериментальній медицині (напри­клад, при дослідженні процесів обтікання кров’ю різних моделей серцевих клапанів, особливостей плину рідин по штучних судинах, криволінійному ложеві насоса апарату штучного кровообігу тощо).

Розглядаючи будь-який плин рідин і рівняння його руху, можна ви­ділити деякі важливі параметри рідини (h – в’язкість, r – густина, χ; – модуль об’ємної пружності) і характеристики її руху (υ; – швид­кість, L – характерні розмі­ри, t – деякий характерний час, про­тя­гом якого відбувають­ся помітні зміни плину тощо). У гідро­ди­на­мі­ці відомі декілька безрозмірних величин, що являють собою ком­бі­на­цію цих параметрів. Це числа Рейнольдса (Re), Фруда (F), Маха (М), Струхаля (S). Кожне з цих чисел має певний фізичний зміст. Так, число Маха є відношенням швидкостей руху тіла і звука у даному середовищі (М = υ;/ c). Число Струхаля – відношення деякого характерного розміру пото­ку рідини і розмірів тіла (S = υ×t / L). Число Фруда (Ф = υ2 / gL) визначає відношення кінетичної енергії рідин до її при­росту, обумовленого роботою сили тяжіння на деякій ха­рактер­­ній відстані (чим більше число Фруда, тим більша роль інерції у порівнянні з дією сили тяжіння).

Одним з найважливіших критеріїв подібності є число Рейноль­д­са. За порядком величини воно дорівнює відно­шенню кінетичної енергії рідини до витрати її, обумовленої роботою сил в’язкого тертя на характерній довжині. Дійсно, кінетична енергія рідини Eк ~ rL 3 υ;2, робота сил в’язкості А = = Fт×L. Силу в’язкого тертя знайдемо за формулою Ньютона Fm ~ h×L 2× . Відношення кінетич­ної енергії Ек до роботи А і становить число Рейнольдса:

Re = . (3.30)

Число Рейнольдса, таким чином, визначає відносну роль інерції і в’язкості рідини при її плині. При великих числах Рейнольдса головну роль відіграє інерція, при малих – в’яз­кість. При плині рідини по циліндричних трубках у ролі характерного розміру L часто використовують радіус чи діаметр судини. Потоки рідин вважаються подібними, якщо для них числа Рейнольдса і Фруда збігаються. При малих числах Рейнольдса плин в’язких рідин є ламінарним, при зростанні швидкості ламінарний плин стає нестійким і перетворюється в турбулентний. Турбулентний плин – це такий плин, гідродинамічні характеристики якого (швид­кість, тиск) різко та нерегулярно змінюються з часом і у просторі. Час­тинки рідини рухаються по складних траєкто­ріях, рідина інтен­сив­но перемішується. Прикладом такого руху є рух крові при її вигнанні з шлуночків серця, її плині по аорті тощо.

Слід зауважити, що при турбулентному русі рідини не діють звичайні формули гідродинаміки (гемодинаміки). Так, на відміну від закону Гагена–Пуазейля і формули Пуазейля, згідно з якими при ламінарному плині об’ємна швидкість Q чи лінійна швидкість υ; пропорційні різниці тисків υ; ~ у першому степені, при турбулентній течії рідини за певними умовами має місце закон Шезі, згідно з яким лі­ній­на швидкість . Для рідини, що тече по пев­ній судині, можна визначити значення швидкості υкр, при якій рух із ламінарного перетворюється у турбулентний. Число Рейнольдса, при якому відбувається це явище, зветь­ся критичним:

. (3.31)

У геометрично подібних системах перехід від ламінар­ного до тур­булентного плину відбувається завжди при од­них і тих самих зна­ченнях числа Рейнольдса. Так, згідно (3.31) критичне значення числа Re для в’яз­кої рідини, що тече по довгій циліндричній трубці, становить 2300. Значен­ня чисел Рейнольдса для крові в різних ділянках судинного русла подані у табл. 3.2.

Зауважимо, що зміна величини в’язкості крові (напри­клад, при анемії) може діагностуватися завдяки виникненню турбулентних шумів. Це пояснюється тим фактом, що при анемії коефіцієнт в’язкості зменшується у 2–3 і більше разів. Відповідно число Рейнольдса збільшується, оскільки Re ~ 1/ h. Як наслідок, число Рейнольдса стає більшим за своє критичне значення і виникає перехід від ламінарного плину крові до турбулентного.

Ще одне медичне застосування переходу між ламінар­ною і турбулентною течією крові пов’язане з вимірюванням кров’яного тиску методом Короткова. У цьому методі сис­то­ліч­ний (верхній) тиск вимірюється у момент, коли кров починає протискуватися через отвір в артерії, стиснутій за допомогою манжети. Саме у цей момент виникають шуми, обумовлені появою турбулентної течії крові. Діастолічний (нижній) тиск фіксується у момент, коли ці шуми зникають внаслідок послаблення манжети і переходу течії від ламі­нарної до турбулентної.







Дата добавления: 2015-10-12; просмотров: 1826. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия