Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поверхности Безье.





Как и кривые, поверхности в компьютерной графике обычно задаются параметрически. (1) , где и - независимые параметры.

В матричной форме уравнение (1) записывается как

(2) , где – множество точек в пространстве, образующих поверхность.

Как и в случае кривых, диапазон изменения параметров зависит от выбранного способа параметризации. При нормальной параметризации, т.е. при которой значения и нормированы, точка с координатами (; ) принадлежит единичному квадрату.

Если зафиксировать некоторое значение параметра и изменять значение параметра , то получится линия в пространстве, описываемая уравнением и называемая v -линией. Таким образом, набор фиксированных значений u порождает семейство v -линий. Аналогично определяются u -линии. Построив некоторое количество u -линий и v -линий, получим сетку топологически ортогональных параметрических кривых, каждая из которых принадлежит исходной поверхности. Параметры u и v являются внутренними криволинейными координатами на поверхности Q.

Поверхность Безье степени NxM задается выражением

(8) , где , ,

Для определения такой поверхность Безье требуется задать (N+1)x(M+1) точек. Чаще всего используются бикубические поверхности Безье (N=3, M=3), задаваемые 16-ю точками. Границами такого бикубического сегмента поверхности Безье являются кубические кривые Безье.

Подобно тому, как промежуточные управляющие точки кубической кривой задают направления касательных на ее концах, векторы и коллинеарны касательным к границам поверхности в точке . Вектор коллинеарен вектору кручения .







Дата добавления: 2015-10-12; просмотров: 777. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия