Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейчатая и бикубическая поверхности Кунса.





Линейчатую поверхность можно рассматривать как поверхность, получающуюся в результате пространственного движения отрезка прямой переменной длины. Сам отрезок в этом случае называются образующей линией, а траектории его концов – направляющими линиями. Можно также считать, что образующая линейно переводит точки одной направляющей линии в точки другой.

Линейчатая поверхность описывается уравнением:

(5) ,

где и – граничные кривые, направляющие.

Параметрические линии линейчатой поверхности в одном направлении – отрезки, в другом – кривые, линейно трансформирующиеся от одной направляющей к другой. Билинейная поверхность является частным случаем линейчатой поверхности.

 

Для целей геометрического моделирования было бы более удобно задавать все четыре границы порции поверхности в виде кривых

(6)

Для “смешивания” граничных кривых можно использовать линейную интерполяцию:

(7)

Последний член вычитается, так как при сложении двух первых слагаемых, задающих интерполяцию в u и v направлениях возникает “лишняя” билинейная поверхность. Это происходит из-за того, что каждая из “угловых” точек принадлежит паре граничных кривых, например, принадлежит одновременно кривым и . Таким образом, при суммировании двух первых членов влияние каждой угловой точки удваивается.

Линейчатая поверхность является частным случаем линейной поверхности Кунса.

 







Дата добавления: 2015-10-12; просмотров: 1189. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия