Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейчатая и бикубическая поверхности Кунса.





Линейчатую поверхность можно рассматривать как поверхность, получающуюся в результате пространственного движения отрезка прямой переменной длины. Сам отрезок в этом случае называются образующей линией, а траектории его концов – направляющими линиями. Можно также считать, что образующая линейно переводит точки одной направляющей линии в точки другой.

Линейчатая поверхность описывается уравнением:

(5) ,

где и – граничные кривые, направляющие.

Параметрические линии линейчатой поверхности в одном направлении – отрезки, в другом – кривые, линейно трансформирующиеся от одной направляющей к другой. Билинейная поверхность является частным случаем линейчатой поверхности.

 

Для целей геометрического моделирования было бы более удобно задавать все четыре границы порции поверхности в виде кривых

(6)

Для “смешивания” граничных кривых можно использовать линейную интерполяцию:

(7)

Последний член вычитается, так как при сложении двух первых слагаемых, задающих интерполяцию в u и v направлениях возникает “лишняя” билинейная поверхность. Это происходит из-за того, что каждая из “угловых” точек принадлежит паре граничных кривых, например, принадлежит одновременно кривым и . Таким образом, при суммировании двух первых членов влияние каждой угловой точки удваивается.

Линейчатая поверхность является частным случаем линейной поверхности Кунса.

 







Дата добавления: 2015-10-12; просмотров: 1189. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия