Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейчатая и бикубическая поверхности Кунса.





Линейчатую поверхность можно рассматривать как поверхность, получающуюся в результате пространственного движения отрезка прямой переменной длины. Сам отрезок в этом случае называются образующей линией, а траектории его концов – направляющими линиями. Можно также считать, что образующая линейно переводит точки одной направляющей линии в точки другой.

Линейчатая поверхность описывается уравнением:

(5) ,

где и – граничные кривые, направляющие.

Параметрические линии линейчатой поверхности в одном направлении – отрезки, в другом – кривые, линейно трансформирующиеся от одной направляющей к другой. Билинейная поверхность является частным случаем линейчатой поверхности.

 

Для целей геометрического моделирования было бы более удобно задавать все четыре границы порции поверхности в виде кривых

(6)

Для “смешивания” граничных кривых можно использовать линейную интерполяцию:

(7)

Последний член вычитается, так как при сложении двух первых слагаемых, задающих интерполяцию в u и v направлениях возникает “лишняя” билинейная поверхность. Это происходит из-за того, что каждая из “угловых” точек принадлежит паре граничных кривых, например, принадлежит одновременно кривым и . Таким образом, при суммировании двух первых членов влияние каждой угловой точки удваивается.

Линейчатая поверхность является частным случаем линейной поверхности Кунса.

 







Дата добавления: 2015-10-12; просмотров: 1189. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия