Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кусочное представление кривых кубическими сегментами. Идея метода. Достоинства и недостатки.





Известные из теории интерполяции многочлены Лагранжа отличаются наличием осцилляций и высокой степенью при большом количестве узлов (их степень, в общем случае, N-1, где N – число узлов). Высокая степень многочлена весьма нежелательна, так как она приводит к усложнению вычислений.

На практике часто используются сплайны, т.е. кривые, составленные из сегментов, описываемых параметрически заданными многочленами третьей степени (кубическими) вида (1) , где - независимый параметр

Часто используется нормальная параметризация, при которой значение нормировано и принадлежит отрезку . Используется также, например, естественная параметризация, при которой значение соответствует длине кривой от ее начала до точки . Параметрическое представление удобно тем, что оно позволяет избежать “математических осложнений”, связанных с представлением в виде , например, кривых с самопересечениями.Третья степень многочлена обеспечивает удовлетворительное выполнение условий адекватной “плавности и приемлемой вычислительной трудоемкости.

Рассмотрим, для начала, поведение одного кубического сегмента, заключенного между двумя соседними узлами интерполяции Pi(xi, yi) и Pi+1(xi+1, yi+1). Используя нормальную параметризацию, запишем условие, того, что сегмент кривой начинается в точке Pi(xi, yi) и заканчивается в точке Pi+1(xi+1, yi+1).

(2) ; ; ; ;

Очевидно, что для однозначного нахождения восьми неизвестных коэффициентов в уравнении (1) условий (2) недостаточно. Введем дополнительные условия, задав значения касательных векторов в начале и конце сегмента:

(3) ; ; ; ,

учитывая, что

(4) .

Итак, мы имеем 8 уравнений (2) и (3) и восемь неизвестных в (1). Решая систему уравнений, находим неизвестные коэффициенты в (1).








Дата добавления: 2015-10-12; просмотров: 700. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия