Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кусочное представление кривых кубическими сегментами. Идея метода. Достоинства и недостатки.





Известные из теории интерполяции многочлены Лагранжа отличаются наличием осцилляций и высокой степенью при большом количестве узлов (их степень, в общем случае, N-1, где N – число узлов). Высокая степень многочлена весьма нежелательна, так как она приводит к усложнению вычислений.

На практике часто используются сплайны, т.е. кривые, составленные из сегментов, описываемых параметрически заданными многочленами третьей степени (кубическими) вида (1) , где - независимый параметр

Часто используется нормальная параметризация, при которой значение нормировано и принадлежит отрезку . Используется также, например, естественная параметризация, при которой значение соответствует длине кривой от ее начала до точки . Параметрическое представление удобно тем, что оно позволяет избежать “математических осложнений”, связанных с представлением в виде , например, кривых с самопересечениями.Третья степень многочлена обеспечивает удовлетворительное выполнение условий адекватной “плавности и приемлемой вычислительной трудоемкости.

Рассмотрим, для начала, поведение одного кубического сегмента, заключенного между двумя соседними узлами интерполяции Pi(xi, yi) и Pi+1(xi+1, yi+1). Используя нормальную параметризацию, запишем условие, того, что сегмент кривой начинается в точке Pi(xi, yi) и заканчивается в точке Pi+1(xi+1, yi+1).

(2) ; ; ; ;

Очевидно, что для однозначного нахождения восьми неизвестных коэффициентов в уравнении (1) условий (2) недостаточно. Введем дополнительные условия, задав значения касательных векторов в начале и конце сегмента:

(3) ; ; ; ,

учитывая, что

(4) .

Итак, мы имеем 8 уравнений (2) и (3) и восемь неизвестных в (1). Решая систему уравнений, находим неизвестные коэффициенты в (1).








Дата добавления: 2015-10-12; просмотров: 700. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия