Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кривые Безье.





В общем случае, кривая Безье задается векторным уравнением

(10) , где , ,

а - вершины так называемого определяющего многоугольника.

Кривые Безье названы в честь предложившего их французского ученого П. Безье (Bezier).

Кривые Безье обладают следующими свойствами:

1) Степень кривой N на единицу меньше числа вершин определяющего многогранника. Для двух точек кривая Безье превращается в отрезок прямой.

2) Начинается в точке и заканчивается в точке .

3) Вектор сонаправлен с вектором касательной к кривой в ее начальной точке . Вектор сонаправлен с вектором касательной к кривой в ее конечной точке .

4) Целиком лежит внутри выпуклой оболочки определяющего многоугольника.

 

Для нас наибольший интерес представляет частный случай кривой Безье – кривая Безье третьей степени (кубическая), создаваемая по четырем точкам. При N =3 выражение (10) примет вид:

(11) , ,

 

Кубические кривые Безье можно использовать в задачах сплайновой интерполяции для представления сегментов, если считать точки и узлами интерполяционного сплайна, а точки и - управляющими точками сегмента.

Для построения цепочки кубических сегментов Безье используется метод

Graphics.DrawBeziers(Pen, Point[]). Для задания N сегментов требуется 4 + 3N точек, т.к. последняя точка любого внутреннего сегмента является первой следующего. Непрерывность касательной вдоль всего сплайна в этом методе не обеспечивается. Чтобы обеспечить непрерывность касательной, следует подбирать управляющие точки таким образом, чтобы каждый внутренний узел сплайна был серединой отрезка, соединяющего контрольную точку предыдущего сегмента и контрольную точку следующего сегмента.








Дата добавления: 2015-10-12; просмотров: 595. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия