Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство (Для случая L.) Г, ┐S├ F Г &┐S F - тавтология. Но





Г &┐ S F = ┐(Г&┐ S) F = ┐(Г&┐ S) = ┐Г S = Г S.

Имеем: Г S — тавтология Г ├ S.

Пустая формула не имеет никакого значения ни в какой интерпретации, в частности, не является истинной ни в какой интерпретации и, по определению, является противоречием. В качестве фор­мулы F при доказательстве от противного по методу резолюций принято использовать пустую формулу.

Метод резолюций работает с особой стандартной формой формул, которые называются предло­жениями. Предложение — это бескванторная дизъюнкция литералов. Любая формула исчисления предикатов может быть преобразована в множество предложений следующим образом (здесь знак используется для обозначения способа преобразования формул).

 

1. Элиминация импликации. Преобразование: А В А В. После первого этапа формула содержит только ┐, &, , , , .

2. Протаскивание отрицаний. Преобразования: ┐ x А xА, x A xА, ┐┐ A A,(A B) A &В,(A & B) A В. После второго этапа формула содержит отрицания только перед атомами.

3. Разделение связанных переменных. Преобразование:

Q 1 x A(... Q 2 x B(... x...)...) Q 1 x A(... Q 2 y B(... y...)...),

где Q 1 и Q 2 — любые кванторы. После третьего этапа формула не содержит случайно совпадаю­щих связанных переменных.

4. Приведение к предваренной форме. Преобразования:

Q x A B Q x (A B), Q x A&B Q x (A&В),

где Q — любой квантор. После четвертого этапа формула находится в предваренной форме.

5. Элиминация кванторов существования (сколемизация). Преобразования:

x 1 Q 2 x 2 ... Qn xn A(x 1, x 2 , ...,xn) Q 2 x 2 ... Qn xn A(a, x 2 , ...,xn),

x 1 ... xi- 1 xi Qi+ 1 xi+ 1... Qn xn A(x 1,..., xi, ...,xn)

x 1 ... xi- 1 xi Qi+ 1 xi+ 1... Qn xn A(x 1,..., f(x 1 ,..., xi- 1 ), ...,xn)

где а — новая предметная константа, f — новый функтор, a Q 1, Q 2,..., Qn — любые кванторы. После пятого этапа формула содержит только кванторы всеобщности.

6. Элиминация кванторов всеобщности. Преобразование: x А(х) А(х). После шестого этапа формула не содержит кванторов.

7. Приведение к конъюнктивной нормальной форме. Преобразование:

A (B&C) (A B)&(A C), (A&B) C (A C)&(B C).

После седьмого этапа формула находится в конъюнктивной нормальной форме.

8. Элиминация конъюнкции. Преобразование: A&В А, В. После восьмого этапа формула распа­дается на множество предложений.

Не все преобразования на этапах 1-8 являются логически эквивалентными.

Теорема 4.21. Если Г — множество предложений, полученных из формулы S, то S является проти­воречием тогда и только тогда, когда множество Г невыполнимо.

Доказательство. В доказательстве нуждается шаг 5 — сколемизация. Пусть

F= x 1 ... xi- 1 xi Qi+ 1 xi+ 1... Qn xn A(x 1,..., xn).

Положим

F': = x 1 ... xi- 1 xi Qi+ 1 xi+ 1... Qn xn A(x 1,..., f(x 1 ,..., xi- 1 ),

xi+1,...,xn).

Пусть F — противоречие, a F' — не противоречие. Тогда существует интерпретация I и набор зна­чений s = (a 1,..., ai- 1, ai+ 1,..., an) такой что (F') = И. Положим ai:= f(a 1,..., ai- 1 ), s 1:= (a 1,..., ai- 1, ai, ai+ 1,..., an). Тогда (F) = И и F — выполнимая формула.

 

Множество формул Г невыполнимо — это означает, что множество Г не имеет модели, то есть не существует интерпретации, в которой все формулы Г имели бы значение И.

 







Дата добавления: 2015-10-15; просмотров: 526. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия