Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Найти выборочный коэффициент ранговой корреляции Спирмена между оценками двух преподавателей.





Решение. Присвоим ранги оценкам первого преподавателя. Эти оценки расположены в убывающем порядке, поэтому их ранги равны порядковым номерам:

Таблица 3.

Ранги                        
Оценки 1-го преподавателя                        

 

Присвоим ранги оценкам второго преподавателя, для чего сначала расположим эти оценки в убывающем порядке и пронумеруем их:

 

Таблица 4.

                       
                       

 

Напомним, что индекс i при у должен быть равен порядковому номеру оценки первого преподавателя.

Найдем ранг у1. Индекс i=1 указывает, что рассматриваетсяоценка первого преподавателя, которая занимает в таблице 3 первое место (эта оценка равна 98); из условия видно, что второй преподаватель поставил оценку 99, которая в таблице 4 расположена на первом месте. Таким образом, у1=1.

Найдем ранг у2. Индекс i=2 указывает, что рассматриваетсяоценка первого преподавателя которая занимает в таблице 3 второе место; из условия видно, что второй преподаватель поставил оценку 91, которая в таблице 4 расположена на третьем месте. Таким образом, ранг у2=3.

Аналогично найдем остальные ранги: у3=2, у4=5, у5=4, у6=8, у7=6, у8=7, у9=12, у10=10, у11=9, у12=11.

Выпишем последовательности рангов хi и уi:

Таблица 5.

xi                        
yi                        

 

Найдем разности рангов: d1=x1-y1=0, d2=x2-y2=-1. Аналогично получим: d3=1, d4=-1, d5=1, d6=-2, d7=1, d8=1, d9=-3, d10=0, d11=2, d12=1.

Вычислим суссу квадратов разностей рангов:

Найдем искомый коэффициент ранговой корреляции Спирмена, учитывая, что n=12:

Итак,

 

Пример 4: Специалисты двух заводов проранжировали 11 факторов, влияющих на ход технологического процесса. В итоге были получены две последовательности рангов:

Таблица 6

хi                      
yi                      

 

Определить, согласуются ли мнения специалистов различных заводов, использую коэффициент ранговой корреляции Спирмена.

 

Решение:Выпишем последовательности рангов хi и уi:

xi                      
yi                      

 

Найдем разности рангов: d1=x1-y1=0, d2=x2-y2=0. Аналогично получим: d3=0, d4=-1, d5=1, d6=-3, d7=-1, d8=-3, d9=3, d10=3, d11=1.

Вычислим суссу квадратов разностей рангов:

Найдем искомый коэффициент ранговой корреляции Спирмена, учитывая, что n=11:

Итак,

 

Пример 5: В примере 3 по выборке объема n=12 вычислен выборочный коэффициент ранговой корреляции Спирмена между оценками, выставленными одним и тем же учащимся двумя преподавателями. При уровне значимости 0,05 проверить гипотезу о равенстве нулю генерального коэффициента ранговой корреляции Спирмена. Другими словами, требуется проверить, является ли значимой ранговая корреляционная связь между оценками двух преподавателей.

 

Решение:Найдем критическую точку двусторонней критической области распределения Стьюдента по уровню значимости и числу степеней свободы ; 0,05;10)=2,23

Найдем критическую точку:

Итак, . Так как -есть основания отвергнуть нулевую гипотезу о равенстве нулю генерального коэффициента ранговой корреляции Спирмена. Другими словами, ранговая корреляционная связь между оценками двух преподавателей значимая.

Пример 6: В примере 4 по выборке объема n=11 вычислен выборочный коэффициент ранговой корреляции Спирмена между двумя последовательностями рангов, установленными специалистами двух заводов при ранжировании факторов, влияющих на ход технологического процесса. При уровне значимости 0,01 проверить, значима ли ранговая корреляционная связь между последовательностями рангов.

Решение:Найдем критическую точку двусторонней критической области распределения Стьюдента по уровню значимости и числу степеней свободы ; 0,01;9)=3,25

Найдем критическую точку:

Итак, . Так как -есть основания отвергнуть нулевую гипотезу о равенстве нулю генерального коэффициента ранговой корреляции Спирмена. Другими словами, ранговая корреляционная связь между оценками двух преподавателей значимая.

 

 







Дата добавления: 2015-10-15; просмотров: 3556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия