Ранговый критерий Спирмена
Пусть имеется случайная выборка (X1,Y1),…,(Xn,Yn) генеральной совокупности двумерной непрерывной случайной величины (X, Y) с функцией распределения F(t,τ), a FX(t) и FY(τ) — функции распределения случайных величин X и Y соответственно. Если случайные величины X и У имеют нормальные распределения, то для проверки статистической гипотезы об их независимости H0: F(t,τ) = FX(t)FY(τ) можно использовать процедуру, связанную с вычислениями выборочного коэффициента корреляции (По формуле: Если же о распределениях непрерывных случайных величин X и Y ничего не известно, то для проверки основной гипотезы (1) при альтернативной гипотезе Н1: F(t,τ) ≠ FX(t)FY(τ) для некоторых (t, τ) € R2 используют ранговый критерий Спирмена, основанный на следующем понятии. Пусть задана конечная числовая последовательность (1) Определение 1. Рангом Ri элемента zi числовой последовательности (1) называют его порядковый номер в вариационном ряду z(1),…,z(N). Множество результатов измерений {x1, x2, …, xn} величины X называется выборкой объема n. Для того чтобы иметь возможность воспользоваться аппаратом теории вероятностей, целесообразно наблюдаемую величину X рассматривать как случайную величину, функцию распределения которой F(x)=P{X<x}следует определить. Полученный статистический материал x1, x2,...xn наблюдений представляет собой первичные данные о величине, подлежащей статистической обработке. Обычно такие статистические данные оформляются в виде таблицы, графика, гистограммы и т.д. Если выборка объема n содержит k различных элементов Вариационным (статистическим) рядом называется таблица, первая строка которой содержит в порядке возрастания элементы Согласно определению, Ri — это число элементов последовательности z1,..., zN, не больших чем zi, которое можно записать следующим образом: Ri = 1+ Пример 1. Рассмотрим выборку z4=(3,8, 4,7, —2,6,17,3). Ее вариационный ряд имеет вид —2,6; 3,8; 4,7; 17,3. Поэтому R1(z4) = 2, R2(z4) = 3, R3(z4) = 1, R4(z4) = 4. # Определение 2. Рангом элемента Zi случайной выборки ZN = (Z1,..., ZN) называют случайную величину Ri(ZN), реализация которой Ri(zN) есть ранг реализации zi случайной величины Zi, в вариационном ряду z(1),…,z(N). Обозначим через Ri = Ri(Xn) — ранг элемента Хi случайной выборки Х1,..., Хn, а через Si = Si(Yn) — ранг элемента Yi случайной выборки Y1,..., Yn. Ранговым коэффициентом корреляции Спирмена назовем случайную величину
где Статистика (2) является выборочным коэффициентом корреляции последовательностей рангов R1,…,Rn и S1,…,Sn. Согласно определению рангов Ri, Si, i=, Без ограничения общности можно считать, что значения пар наблюдений (xi, yi), i =, занумерованы в порядке возрастания их первых элементов, т.е. так, что выполняются неравенства x1<x2<…<xn. В этом случае реализация ri ранга Ri равна i, i =, и значение где Пусть выборочный коэффициент корреляции используется для нахождения линейной зависимости между случайными величинами X и Y. И если же между X и Y имеется функциональная, но не линейная зависимость, то выборочный коэффициент корреляции может быть равен нулю. Аналогично выгладит ситуация с ранговым коэффициентом (2), главным отличием является то, что он выявляет не только линейную, но и любую монотонную зависимость. Доказательство этого начнем с исследования статистики Если, а > 0, то большим значениям xi соответствуют большие значения yi, и, наоборот, меньшим значениям xi — меньшие значения yi, Если же, а < 0, то большим значениям xi соответствуют меньшие значения yi, а меньшим значениям xi — большие значения yi, i =. В этом случае ri=sn-i+1, si=rn-i+1, i =, и Заметим, что если Аналогично, если Y = Условие Рассмотрим теперь другой крайний случай, когда случайные величины X uY независимы, т.е. когда основная гипотеза H0 является истинной. В этой ситуации случайный вектор (Si,..., Sn) принимает с равной вероятностью любое свое возможное значение, являющееся одной из n! перестановок, составленной из чисел 1, 2,...,n. Следовательно, вероятность того, что статистика Можно показать, что при истинности основной гипотезы (1) M и, следовательно, при этом выборочные значения статистики При небольших n это распределение табулировано. Известно, что при n т.е. квантили случайной величины
|