Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные законы распределения





 

Равномерный закон распределения. Непрерывная случайная величину Х имеет равномерный закон распределения (закон постоянной плотности) на отрезке [a; b], если на этом отрезке функция плотности вероятности f(x) случайной величины X постоянна, т.е. f(x) имеет вид:

Рисунок 1. Равномерный закон распределения

Математическое ожидание равномерного распределения: M(X) = (a + b)/2
Дисперсия равномерного распределения: D(X) = (b - a)2/12
Среднее квадратичное отклонение равномерного распределения: σ(X) = (b - a)/(2√3)

Нормальный закон распределения (закон Гаусса). Непрерывная случайная величина Х имеет нормальный закон распределения с параметрами a и σ, если ее плотность вероятности имеет вид:

Известно, что =M(X) и . График нормального распределения имеет куполообразную форму, он симметричен относительно своего математического ожидания, а на степень его островершинности влияет величина среднего квадратичного отклонения.

Рисунок 2. График плотности случайной величины, в случае нормального распределения.

Мода и медиана нормального распределения равны:
Mo(X) = ; Me(X) = , где - математическое ожидание.

Интегральная функция нормального распределения вероятностей:

Интегральная функция распределения вероятностей показывает вероятность того, что случайная величина X примет значение меньшее, чем x: F(x) = P(X < x). Численно она равна площади криволинейной трапеции, ограниченной сверху графиком плотности вероятности, снизу осью абсцисс случайной величины, на интервале от -∞ до x. Ниже дана иллюстрация.

Рисунок 3. Интегральная функция нормального распределения.

 

Показательный (экспоненциальный) закон распределения. Непрерывная случайная величина X имеет показательный (экспоненциальный) закон распределения с параметром λ >0, если ее плотность вероятности имеет вид:

где λ — постоянная положительная величина.

Математическое ожидание: .

Дисперсия: .

Используя свойство два плотности распределения (Несобственный интеграл от плотности распределения в пределах от - до равен единице) можно найти функцию распределения экспоненциального закона:

Рисунок 4. Экспоненциальный закон распределения.

Распределение хи-квадрат. Пусть независимые случайные величины Xi (i = 1, 2,..., n) — распределены по стандартному нормальному закону. Тогда говорят, что сумма квадратов этих величин

распределена по закону χ2 («хи квадрат») с n степенями свободы

Плотность распределения случайной величины χ2 имеет следующий вид:

Здесь — гамма-функция.

Отсюда видно, что распределение «хи квадрат» определяется одним параметром n —независимым числом степеней свободы.

С увеличением числа степеней свободы распределение медленно приближается к нормальному.

Рисунок 5. Распределение хи-квадрат.

Основные характеристики распределение хи квадрат (математическое ожидание и дисперсия):

 

Распределение Стьюдента. Случайная величина есть отношение двух независимых случайных величин и , то есть

Распределение случайной величины называется распределением Стьюдента с степенями свободы. Его плотность задаётся формулой

Математическое ожидание и дисперсия случайной величины, подчинённой распределению Стьюдента , есть

 

Как и в случае и хи-квадрат распределением, при увеличении распределение Стьюдента стремиться к нормальному, более того, стандартизованному нормальному (то есть с нулевым математическим ожиданием и единичной дисперсией).
Распределение Стьюдента, как хи-квадрат распределение, широко применяется в задачах математической обработки измерений.

Распределение Фишера. Пусть случайная величина равна отношению двух независимых случайных величин и , то есть

Распределение случайной величины называется распределением Фишера с и степенями свободы. Оно имеет следующую плотность вероятности

Математическое ожидание случайной величины, подчинённой распределению Фишера, определяется по формуле

Между случайными величинами, имеющими нормальное распределение: хи-квадрат, Стьюдента и Фишера, имеют место соотношения







Дата добавления: 2015-10-15; просмотров: 3822. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия